You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
413 lines
14 KiB
413 lines
14 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/operator.h"
|
|
#include "paddle/platform/transform.h"
|
|
|
|
#ifdef __NVCC__
|
|
#include <thrust/iterator/iterator_adaptor.h>
|
|
#endif
|
|
|
|
#include "paddle/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
/*
|
|
* Out = X ⊙ Y
|
|
* If Y's shape does not match X' shape, they will be reshaped.
|
|
* For example:
|
|
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
|
|
* pre=2, n=3*4, post=5
|
|
* x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
|
|
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
|
|
* pre=2*3, n=4*5, post=1
|
|
* x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
|
|
*/
|
|
inline void get_mid_dims(const framework::DDim& x_dims,
|
|
const framework::DDim& y_dims, const int axis,
|
|
int& pre, int& n, int& post) {
|
|
pre = 1;
|
|
n = 1;
|
|
post = 1;
|
|
for (int i = 0; i < axis; ++i) {
|
|
pre *= x_dims[i];
|
|
}
|
|
|
|
for (int i = 0; i < y_dims.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
|
|
"Broadcast dimension mismatch.");
|
|
n *= y_dims[i];
|
|
}
|
|
|
|
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
|
|
post *= x_dims[i];
|
|
}
|
|
}
|
|
|
|
template <typename T, typename DeviceContext>
|
|
class RowwiseTransformIterator;
|
|
template <typename T, typename DeviceContext>
|
|
class MidWiseTransformIterator;
|
|
|
|
template <typename T>
|
|
class RowwiseTransformIterator<T, platform::CPUDeviceContext> {
|
|
public:
|
|
RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}
|
|
|
|
RowwiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
|
|
++i_;
|
|
if (UNLIKELY(i_ == n_)) {
|
|
i_ = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
|
|
rhs) const {
|
|
return (ptr_ + i_) == &(*rhs);
|
|
}
|
|
|
|
bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
|
|
rhs) const {
|
|
return (ptr_ + i_) != &(*rhs);
|
|
}
|
|
|
|
const T& operator*() { return ptr_[i_]; }
|
|
|
|
private:
|
|
const T* ptr_;
|
|
int i_;
|
|
int64_t n_;
|
|
};
|
|
|
|
template <typename T>
|
|
class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
|
|
public:
|
|
MidWiseTransformIterator(const T* ptr, int n, int post)
|
|
: ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}
|
|
|
|
MidWiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
|
|
++j_;
|
|
if (UNLIKELY(j_ == post_)) {
|
|
++i_;
|
|
j_ = 0;
|
|
if (UNLIKELY(i_ == n_)) {
|
|
i_ = 0;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
|
|
rhs) const {
|
|
return (ptr_ + i_) == &(*rhs);
|
|
}
|
|
|
|
bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
|
|
rhs) const {
|
|
return (ptr_ + i_) != &(*rhs);
|
|
}
|
|
|
|
const T& operator*() { return ptr_[i_]; }
|
|
|
|
private:
|
|
const T* ptr_;
|
|
int64_t i_;
|
|
int64_t j_;
|
|
int64_t n_;
|
|
int64_t post_;
|
|
};
|
|
|
|
#ifdef __NVCC__
|
|
template <typename T>
|
|
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
|
|
: public thrust::iterator_adaptor<
|
|
RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
|
|
public:
|
|
typedef thrust::iterator_adaptor<
|
|
RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
|
|
super_t;
|
|
HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
|
|
: super_t(x), begin_(x), n_(n){};
|
|
friend class thrust::iterator_core_access;
|
|
|
|
private:
|
|
unsigned int n_;
|
|
const T* begin_;
|
|
HOSTDEVICE typename super_t::reference dereference() const {
|
|
return *(begin_ + (this->base() - begin_) % n_);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
|
|
: public thrust::iterator_adaptor<
|
|
MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
|
|
public:
|
|
typedef thrust::iterator_adaptor<
|
|
MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
|
|
super_t;
|
|
HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
|
|
: super_t(x), begin_(x), n_(n), post_(post){};
|
|
friend class thrust::iterator_core_access;
|
|
|
|
private:
|
|
unsigned int post_;
|
|
unsigned int n_;
|
|
const T* begin_;
|
|
HOSTDEVICE typename super_t::reference dereference() const {
|
|
return *(begin_ + (((this->base() - begin_) / post_) % n_));
|
|
}
|
|
};
|
|
#endif
|
|
|
|
template <typename Functor, typename T, typename DeviceContext>
|
|
class TransformFunctor {
|
|
public:
|
|
TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
|
|
framework::Tensor* z, const DeviceContext& ctx, Functor func)
|
|
: x_(x->data<T>()),
|
|
y_(y->data<T>()),
|
|
z_(z->mutable_data<T>(ctx.GetPlace())),
|
|
nx_(x->numel()),
|
|
ctx_(ctx),
|
|
func_(func) {}
|
|
|
|
inline void Run() const {
|
|
platform::Transform<DeviceContext> trans;
|
|
trans(ctx_, x_, x_ + nx_, y_, z_, func_);
|
|
}
|
|
|
|
inline void RunRowWise(int n, int pre) const {
|
|
platform::Transform<DeviceContext> trans;
|
|
trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
|
|
z_, func_);
|
|
}
|
|
|
|
inline void RunMidWise(int n, int pre, int post) const {
|
|
platform::Transform<DeviceContext> trans;
|
|
trans(ctx_, x_, x_ + nx_,
|
|
MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
|
|
}
|
|
|
|
private:
|
|
const T* x_;
|
|
const T* y_;
|
|
T* z_;
|
|
int64_t nx_;
|
|
const DeviceContext& ctx_;
|
|
Functor func_;
|
|
};
|
|
|
|
#define EIGEN_FUNCTOR(name, eigen_op) \
|
|
struct Eigen##name##Functor { \
|
|
template <typename DeviceContext, typename T> \
|
|
inline void Run(const framework::Tensor* x, const framework::Tensor* y, \
|
|
framework::Tensor* z, \
|
|
const framework::ExecutionContext& ctx) { \
|
|
auto x_e = framework::EigenVector<T>::Flatten(*x); \
|
|
auto y_e = framework::EigenVector<T>::Flatten(*y); \
|
|
auto z_e = framework::EigenVector<T>::Flatten(*z); \
|
|
z_e.device( \
|
|
*ctx.template device_context<DeviceContext>().eigen_device()) = \
|
|
eigen_op(x_e, y_e); \
|
|
} \
|
|
template <typename DeviceContext, typename T> \
|
|
inline void RunBroadCast(const framework::Tensor* x, \
|
|
const framework::Tensor* y, framework::Tensor* z, \
|
|
const framework::ExecutionContext& ctx, int pre, \
|
|
int n) { \
|
|
auto x_e = framework::EigenVector<T>::Flatten(*x); \
|
|
auto y_e = framework::EigenVector<T>::Flatten(*y); \
|
|
auto z_e = framework::EigenVector<T>::Flatten(*z); \
|
|
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n)) \
|
|
.broadcast(Eigen::DSizes<int, 2>(pre, 1)) \
|
|
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
|
|
z_e.device( \
|
|
*ctx.template device_context<DeviceContext>().eigen_device()) = \
|
|
eigen_op(x_e, y_bcast); \
|
|
} \
|
|
template <typename DeviceContext, typename T> \
|
|
inline void RunBroadCast2(const framework::Tensor* x, \
|
|
const framework::Tensor* y, \
|
|
framework::Tensor* z, \
|
|
const framework::ExecutionContext& ctx, int pre, \
|
|
int n, int post) { \
|
|
auto x_e = framework::EigenVector<T>::Flatten(*x); \
|
|
auto y_e = framework::EigenVector<T>::Flatten(*y); \
|
|
auto z_e = framework::EigenVector<T>::Flatten(*z); \
|
|
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1)) \
|
|
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post)) \
|
|
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
|
|
z_e.device( \
|
|
*ctx.template device_context<DeviceContext>().eigen_device()) = \
|
|
eigen_op(x_e, y_bcast); \
|
|
} \
|
|
}
|
|
|
|
template <class functor, typename DeviceContext, typename T>
|
|
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
|
|
using Tensor = framework::Tensor;
|
|
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* z = ctx.Output<Tensor>("Out");
|
|
z->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto x_dims = x->dims();
|
|
auto y_dims = y->dims();
|
|
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
|
|
"Rank of first input must >= rank of second input.");
|
|
|
|
if (x_dims == y_dims) {
|
|
functor f;
|
|
f.template Run<DeviceContext, T>(x, y, z, ctx);
|
|
return;
|
|
}
|
|
|
|
int axis = ctx.Attr<int>("axis");
|
|
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
|
|
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
|
|
"Axis should be in range [0, x_dims)");
|
|
|
|
int pre, n, post;
|
|
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
|
|
if (post == 1) {
|
|
functor f;
|
|
f.template RunBroadCast<DeviceContext, T>(x, y, z, ctx, pre, n);
|
|
return;
|
|
} else {
|
|
functor f;
|
|
f.template RunBroadCast2<DeviceContext, T>(x, y, z, ctx, pre, n, post);
|
|
return;
|
|
}
|
|
}
|
|
|
|
#define EIGEN_ADD(x, y) ((x) + (y))
|
|
EIGEN_FUNCTOR(Add, EIGEN_ADD);
|
|
|
|
#define EIGEN_SUB(x, y) ((x) - (y))
|
|
EIGEN_FUNCTOR(Sub, EIGEN_SUB);
|
|
|
|
#define EIGEN_MUL(x, y) ((x) * (y))
|
|
EIGEN_FUNCTOR(Mul, EIGEN_MUL);
|
|
|
|
#define EIGEN_DIV(x, y) ((x) / (y))
|
|
EIGEN_FUNCTOR(Div, EIGEN_DIV);
|
|
|
|
template <typename DeviceContext, typename T, typename functor,
|
|
typename broadcastfunctor, typename broadcast2functor>
|
|
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
|
|
using Tensor = framework::Tensor;
|
|
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* out = ctx.Input<Tensor>("Out");
|
|
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
|
|
|
|
auto x_dims = x->dims();
|
|
auto y_dims = y->dims();
|
|
|
|
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
|
if (dx) {
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
}
|
|
if (dy) {
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
}
|
|
|
|
if (x_dims == y_dims) {
|
|
functor f;
|
|
f(place, x, y, out, dx, dy, dout);
|
|
return;
|
|
}
|
|
|
|
if (y_dims.size() == 1 && y_dims[0] == 1) {
|
|
// y is a scalar
|
|
auto extended_dims = framework::vectorize(x_dims);
|
|
extended_dims.push_back(1);
|
|
x_dims = framework::make_ddim(extended_dims);
|
|
}
|
|
|
|
int axis = ctx.Attr<int>("axis");
|
|
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
|
|
|
|
int pre, n, post;
|
|
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
|
|
|
|
if (post == 1) {
|
|
broadcastfunctor f;
|
|
f(place, x, y, out, dx, dy, dout, pre, n);
|
|
return;
|
|
} else {
|
|
broadcast2functor f;
|
|
f(place, x, y, out, dx, dy, dout, pre, n, post);
|
|
return;
|
|
}
|
|
}
|
|
|
|
template <typename Functor, typename DeviceContext, typename T>
|
|
void ElementwiseComputeEx(const framework::ExecutionContext& ctx) {
|
|
using Tensor = framework::Tensor;
|
|
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* z = ctx.Output<Tensor>("Out");
|
|
z->mutable_data<T>(ctx.GetPlace());
|
|
TransformFunctor<Functor, T, DeviceContext> functor(
|
|
x, y, z, ctx.template device_context<DeviceContext>(), Functor());
|
|
|
|
auto x_dims = x->dims();
|
|
auto y_dims = y->dims();
|
|
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
|
|
"Rank of first input must >= rank of second input.");
|
|
|
|
if (x_dims == y_dims) {
|
|
functor.Run();
|
|
return;
|
|
}
|
|
|
|
if (y_dims.size() == 1 && y_dims[0] == 1) {
|
|
// y is a scalar
|
|
auto extended_dims = framework::vectorize(x_dims);
|
|
extended_dims.push_back(1);
|
|
x_dims = framework::make_ddim(extended_dims);
|
|
}
|
|
|
|
int axis = ctx.Attr<int>("axis");
|
|
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
|
|
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
|
|
"Axis should be in range [0, x_dims)");
|
|
|
|
int pre, n, post;
|
|
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
|
|
if (post == 1) {
|
|
functor.RunRowWise(n, pre);
|
|
return;
|
|
} else {
|
|
functor.RunMidWise(n, pre, post);
|
|
return;
|
|
}
|
|
}
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|