You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
4.6 KiB
132 lines
4.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/huber_loss_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class HuberLossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must be initialized.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must be initialized.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims, y_dims);
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2,
|
|
"The rank of Input(X) must be 2 and the shape is "
|
|
"[batch_size, 1].");
|
|
PADDLE_ENFORCE_EQ(x_dims[1], 1,
|
|
"Each row of Input(X) contains a real value, "
|
|
"so the 2nd dimension of Input(X) must be 1.");
|
|
|
|
ctx->SetOutputDim("Residual", x_dims);
|
|
ctx->SetOutputDim("Out", {x_dims[0], 1});
|
|
ctx->ShareLoD("X", "Out");
|
|
}
|
|
};
|
|
|
|
template <typename AttrType>
|
|
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
HuberLossOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"The input value of huber loss op."
|
|
"X is a 2-D tensor with shape [batch_size, 1].");
|
|
AddInput("Y",
|
|
"The target value of huber loss op."
|
|
"Y is a 2-D tensor with shape [batch_size, 1].");
|
|
AddOutput("Residual",
|
|
"Intermediate tensor to cache residual value between Y and X."
|
|
"The shape is same as Input(X) and will be reused in backward.")
|
|
.AsIntermediate();
|
|
AddOutput("Out",
|
|
"The output tensor with shape [batch_size, 1] "
|
|
"which represents the huber loss.");
|
|
AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
|
|
AddComment(R"DOC(
|
|
HuberLoss Operator.
|
|
|
|
Huber loss is a loss function used in robust regression. We define X as the
|
|
input value and Y as the target value. Huber loss can evaluate the fitness of
|
|
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
|
|
shape of X and Y are [batch_size, 1]. The equation is:
|
|
|
|
$$
|
|
Out_{\delta}(X, Y)_i =
|
|
\begin{cases}
|
|
0.5 * (Y_i - X_i)^2,
|
|
\quad |Y_i - X_i| \leq \delta \\
|
|
\delta * (|Y_i - X_i| - 0.5 * \delta),
|
|
\quad otherwise
|
|
\end{cases}
|
|
$$
|
|
|
|
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
|
|
element of Out, X and Y.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class HuberLossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Residual"),
|
|
"Input(Residual) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
auto residual_dims = ctx->GetInputDim("Residual");
|
|
auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
|
|
PADDLE_ENFORCE_EQ(residual_dims, x_dims);
|
|
PADDLE_ENFORCE_EQ(out_grad_dims, x_dims);
|
|
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
ctx->SetOutputDim(y_grad_name, y_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
|
|
huber_loss_grad, ops::HuberLossGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
huber_loss,
|
|
ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
huber_loss_grad,
|
|
ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>);
|