You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
6.2 KiB
169 lines
6.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
#include "paddle/framework/lod_rank_table.h"
|
|
#include "paddle/framework/lod_tensor_array.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/detail/safe_ref.h"
|
|
#include "paddle/platform/device_context.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
struct CopyRange {
|
|
size_t begin;
|
|
size_t end;
|
|
};
|
|
|
|
class LoDTensorToArrayOp : public framework::OperatorBase {
|
|
public:
|
|
LoDTensorToArrayOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
void Run(const framework::Scope &scope,
|
|
const platform::Place &place) const override {
|
|
auto &x = detail::Ref(scope.FindVar(Input("X")), "Cannot find input %s",
|
|
Input("X"))
|
|
.Get<framework::LoDTensor>();
|
|
auto &rank_table = detail::Ref(scope.FindVar(Input("RankTable")))
|
|
.Get<framework::LoDRankTable>();
|
|
auto &out = *detail::Ref(scope.FindVar(Output("Out")))
|
|
.GetMutable<framework::LoDTensorArray>();
|
|
auto &items = rank_table.items();
|
|
auto max_seq_len = items[0].length;
|
|
auto rank_level = rank_table.level();
|
|
|
|
PADDLE_ENFORCE_LT(rank_level, x.lod().size(),
|
|
"Input should be a LOD tensor, and size is at least %d",
|
|
rank_level + 1);
|
|
out.resize(max_seq_len);
|
|
std::vector<std::vector<CopyRange>> copy_ranges(max_seq_len);
|
|
|
|
// set out[i] lod
|
|
for (size_t t = 0; t < max_seq_len; t++) {
|
|
auto &lod = *out[t].mutable_lod();
|
|
lod.clear();
|
|
for (auto &item : items) {
|
|
if (t >= item.length) {
|
|
break;
|
|
}
|
|
size_t start_idx = x.lod()[rank_level][item.index] + t;
|
|
auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
|
|
x.lod(), start_idx, start_idx + 1, rank_level + 1);
|
|
auto &lod_length = lod_and_offset.first;
|
|
framework::AppendLoD(&lod, lod_length);
|
|
size_t start_offset = lod_and_offset.second.first;
|
|
size_t end_offset = lod_and_offset.second.second;
|
|
copy_ranges[t].emplace_back(CopyRange{start_offset, end_offset});
|
|
}
|
|
}
|
|
for (size_t i = 0; i < max_seq_len; ++i) {
|
|
auto &ranges = copy_ranges[i];
|
|
size_t height = std::accumulate(
|
|
ranges.begin(), ranges.end(), 0UL,
|
|
[](size_t a, const CopyRange &b) { return a + b.end - b.begin; });
|
|
auto x_dim = x.dims();
|
|
x_dim[0] = static_cast<int64_t>(height);
|
|
out[i].Resize(x_dim);
|
|
out[i].mutable_data(x.place(), x.type());
|
|
size_t offset = 0;
|
|
for (auto &each_range : ranges) {
|
|
size_t len = each_range.end - each_range.begin;
|
|
if (len == 0) {
|
|
continue;
|
|
}
|
|
// out[i][offset: offset+len] = x[each_range.begin: each_range.end]
|
|
auto slice = out[i].Slice(static_cast<int>(offset),
|
|
static_cast<int>(offset + len));
|
|
|
|
platform::DeviceContextPool &pool =
|
|
platform::DeviceContextPool::Instance();
|
|
auto &dev_ctx = *pool.Get(place);
|
|
|
|
framework::Copy(x.Slice(static_cast<int>(each_range.begin),
|
|
static_cast<int>(each_range.end)),
|
|
x.place(), dev_ctx, &slice);
|
|
offset += len;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class LoDTensorToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
LoDTensorToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "");
|
|
AddInput("RankTable", "");
|
|
AddOutput("Out", "");
|
|
AddComment("");
|
|
}
|
|
};
|
|
|
|
class LoDTensorToArrayInferShape : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *context) const override {
|
|
PADDLE_ENFORCE(context->HasInput("X"),
|
|
"Input(X) of LoDTensorToArrayOp should not be null.");
|
|
PADDLE_ENFORCE(
|
|
context->HasInput("RankTable"),
|
|
"Input(RankTable) of LoDTensorToArrayOp should not be null.");
|
|
|
|
PADDLE_ENFORCE(context->HasOutput("Out"),
|
|
"Output(Out) of LoDTensorToArrayOp should not be null.");
|
|
|
|
auto x_dim = context->GetInputDim("X");
|
|
// The first dim of each LoDTensor in Output can only be set at run-time.;
|
|
// We still have to Resize each LoDTensor in Output.
|
|
context->SetOutputDim("Out", x_dim);
|
|
}
|
|
};
|
|
|
|
class LoDTensorToArrayInferVarType : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(const framework::OpDesc &op_desc,
|
|
framework::BlockDesc *block) const override {
|
|
for (auto &out_var : op_desc.Output("Out")) {
|
|
block->Var(out_var)->SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY);
|
|
}
|
|
}
|
|
};
|
|
|
|
class LoDTensorToArrayGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto *grad_op = new framework::OpDesc();
|
|
grad_op->SetType("array_to_lod_tensor");
|
|
grad_op->SetInput("X", OutputGrad("Out"));
|
|
grad_op->SetInput("RankTable", Input("RankTable"));
|
|
grad_op->SetOutput("Out", InputGrad("X"));
|
|
grad_op->SetAttrMap(Attrs());
|
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(lod_tensor_to_array, ops::LoDTensorToArrayOp,
|
|
ops::LoDTensorToArrayOpProtoMaker,
|
|
ops::LoDTensorToArrayInferShape,
|
|
ops::LoDTensorToArrayInferVarType,
|
|
ops::LoDTensorToArrayGradMaker);
|