You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
5.0 KiB
142 lines
5.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/lookup_table_op.h"
|
|
#include "paddle/framework/var_type_inference.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class LookupTableOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("W"),
|
|
"Input(W) of LookupTableOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Ids"),
|
|
"Input(Ids) of LookupTableOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of LookupTableOp should not be null.");
|
|
|
|
auto table_dims = ctx->GetInputDim("W");
|
|
auto ids_dims = ctx->GetInputDim("Ids");
|
|
|
|
PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
|
|
PADDLE_ENFORCE_EQ(ids_dims[1], 1);
|
|
|
|
ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]});
|
|
ctx->ShareLoD("Ids", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
LookupTableOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("W",
|
|
"An input represents embedding tensors, "
|
|
"which is a learnable parameter.");
|
|
AddInput("Ids",
|
|
"An input with type int32 or int64 "
|
|
"contains the ids to be looked up in W. "
|
|
"Ids must be a column vector with rank = 2. "
|
|
"The 2nd dimension size must be 1.");
|
|
AddOutput("Out", "The lookup results, which have the same type as W.");
|
|
AddAttr<bool>("is_sparse",
|
|
"(boolean, default false) "
|
|
"Sparse update")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
Lookup Table Operator.
|
|
|
|
This operator is used to perform lookups on the parameter W,
|
|
then concatenated into a dense tensor.
|
|
|
|
The input Ids can carry the LoD (Level of Details) information,
|
|
or not. And the output only shares the LoD information with input Ids.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class LookupTableOpGradDescMaker
|
|
: public framework::DefaultGradOpDescMaker<true> {
|
|
using ::paddle::framework::DefaultGradOpDescMaker<
|
|
true>::DefaultGradOpDescMaker;
|
|
|
|
protected:
|
|
virtual std::string GradOpType() const { return "lookup_table_grad"; }
|
|
};
|
|
|
|
class LookupTableOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
auto table_dims = ctx->GetInputDim("W");
|
|
ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(const framework::OpDesc& op_desc,
|
|
framework::BlockDesc* block) const override {
|
|
auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
|
|
auto attr = op_desc.GetAttr("is_sparse");
|
|
bool is_sparse = boost::get<bool>(attr);
|
|
if (is_sparse) {
|
|
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
|
|
<< " is set to SelectedRows";
|
|
block->Var(out_var_name)
|
|
->SetType(framework::proto::VarDesc::SELECTED_ROWS);
|
|
} else {
|
|
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
|
|
<< " is set to LoDTensor";
|
|
block->Var(out_var_name)->SetType(framework::proto::VarDesc::LOD_TENSOR);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
|
|
ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
|
|
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
|
|
ops::LookupTableOpGradVarTypeInference);
|
|
|
|
REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
|
|
ops::LookupTableKernel<double>);
|
|
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
|
|
ops::LookupTableGradKernel<double>);
|