You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
6.3 KiB
180 lines
6.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
/* Acknowledgement: the following code is strongly inspired by
|
|
https://github.com/caffe2/caffe2/blob/master/caffe2/operators/lstm_unit_op_gpu.cu
|
|
*/
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/cross_entropy_op.h"
|
|
#include "paddle/platform/assert.h"
|
|
#include "paddle/platform/hostdevice.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
|
|
i += blockDim.x * gridDim.x)
|
|
|
|
template <typename Dtype>
|
|
__device__ Dtype cuda_sigmoid(const Dtype x) {
|
|
return Dtype(1) / (Dtype(1) + exp(-x));
|
|
}
|
|
|
|
template <typename Dtype>
|
|
__device__ Dtype cuda_tanh(const Dtype x) {
|
|
return Dtype(1 - exp(-2. * x)) / (Dtype(1) + exp(-2. * x));
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void LSTMUnitKernel(const int nthreads, const int dim,
|
|
const T* C_prev, const T* X, T* C, T* H,
|
|
const T forget_bias) {
|
|
CUDA_1D_KERNEL_LOOP(index, nthreads) {
|
|
const int n = index / dim;
|
|
const int d = index % dim;
|
|
|
|
const T* X_offset = X + 4 * dim * n;
|
|
const T i = cuda_sigmoid(X_offset[d]);
|
|
const T f = cuda_sigmoid(X_offset[1 * dim + d] + forget_bias);
|
|
const T o = cuda_sigmoid(X_offset[2 * dim + d]);
|
|
const T g = cuda_tanh(X_offset[3 * dim + d]);
|
|
const T c_prev = C_prev[index];
|
|
const T c = f * c_prev + i * g;
|
|
C[index] = c;
|
|
const T tanh_c = cuda_tanh(c);
|
|
H[index] = o * tanh_c;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void LSTMUnitGradientKernel(const int nthreads, const int dim,
|
|
const T* C_prev, const T* X, const T* C,
|
|
const T* H, const T* C_diff,
|
|
const T* H_diff, T* C_prev_diff,
|
|
T* X_diff, const T forget_bias) {
|
|
CUDA_1D_KERNEL_LOOP(index, nthreads) {
|
|
const int n = index / dim;
|
|
const int d = index % dim;
|
|
const T* X_offset = X + 4 * dim * n;
|
|
T* c_prev_diff = C_prev_diff + index;
|
|
T* X_diff_offset = X_diff + 4 * dim * n;
|
|
T* i_diff = X_diff_offset + d;
|
|
T* f_diff = X_diff_offset + 1 * dim + d;
|
|
T* o_diff = X_diff_offset + 2 * dim + d;
|
|
T* g_diff = X_diff_offset + 3 * dim + d;
|
|
|
|
const T i = cuda_sigmoid(X_offset[d]);
|
|
const T f = cuda_sigmoid(X_offset[1 * dim + d] + forget_bias);
|
|
const T o = cuda_sigmoid(X_offset[2 * dim + d]);
|
|
const T g = cuda_tanh(X_offset[3 * dim + d]);
|
|
const T c_prev = C_prev[index];
|
|
const T c = C[index];
|
|
const T tanh_c = cuda_tanh(c);
|
|
const T c_term_diff =
|
|
C_diff[index] + H_diff[index] * o * (1 - tanh_c * tanh_c);
|
|
*c_prev_diff = c_term_diff * f;
|
|
*i_diff = c_term_diff * g * i * (1 - i);
|
|
*f_diff = c_term_diff * c_prev * f * (1 - f);
|
|
*o_diff = H_diff[index] * tanh_c * o * (1 - o);
|
|
*g_diff = c_term_diff * i * (1 - g * g);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class LstmUnitOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use CUDAPlace.");
|
|
|
|
auto* x_tensor = ctx.Input<framework::Tensor>("X");
|
|
auto* c_prev_tensor = ctx.Input<framework::Tensor>("C_prev");
|
|
auto* c_tensor = ctx.Output<framework::Tensor>("C");
|
|
auto* h_tensor = ctx.Output<framework::Tensor>("H");
|
|
|
|
auto forget_bias = static_cast<T>(ctx.Attr<float>("forget_bias"));
|
|
|
|
int b_size = c_tensor->dims()[0];
|
|
int D = c_tensor->dims()[1];
|
|
|
|
const T* X = x_tensor->data<T>();
|
|
const T* C_prev = c_prev_tensor->data<T>();
|
|
|
|
T* C = c_tensor->mutable_data<T>(ctx.GetPlace());
|
|
T* H = h_tensor->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int block = 512;
|
|
int n = b_size * D;
|
|
int grid = (n + block - 1) / block;
|
|
|
|
LSTMUnitKernel<T><<<grid, block>>>(n, D, C_prev, X, C, H, forget_bias);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class LstmUnitGradOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use CUDAPlace.");
|
|
|
|
auto x_tensor = ctx.Input<Tensor>("X");
|
|
auto c_prev_tensor = ctx.Input<Tensor>("C_prev");
|
|
auto c_tensor = ctx.Input<Tensor>("C");
|
|
auto h_tensor = ctx.Input<Tensor>("H");
|
|
|
|
auto hdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("H"));
|
|
auto cdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("C"));
|
|
|
|
auto xdiff_tensor = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto c_prev_diff_tensor =
|
|
ctx.Output<Tensor>(framework::GradVarName("C_prev"));
|
|
|
|
auto* X = x_tensor->data<T>();
|
|
auto* C_prev = c_prev_tensor->data<T>();
|
|
auto* C = c_tensor->data<T>();
|
|
auto* H = h_tensor->data<T>();
|
|
|
|
auto* H_diff = hdiff_tensor->data<T>();
|
|
auto* C_diff = cdiff_tensor->data<T>();
|
|
|
|
auto* C_prev_diff = c_prev_diff_tensor->mutable_data<T>(ctx.GetPlace());
|
|
auto* X_diff = xdiff_tensor->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int N = c_tensor->dims()[0];
|
|
int D = c_tensor->dims()[1];
|
|
|
|
auto forget_bias = static_cast<T>(ctx.Attr<float>("forget_bias"));
|
|
|
|
int block = 512;
|
|
int n = N * D;
|
|
int grid = (n + block - 1) / block;
|
|
|
|
LSTMUnitGradientKernel<T><<<grid, block>>>(n, D, C_prev, X, C, H, C_diff,
|
|
H_diff, C_prev_diff, X_diff,
|
|
forget_bias);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(lstm_unit, ops::LstmUnitOpCUDAKernel<float>,
|
|
ops::LstmUnitOpCUDAKernel<double>);
|
|
REGISTER_OP_CUDA_KERNEL(lstm_unit_grad, ops::LstmUnitGradOpCUDAKernel<float>,
|
|
ops::LstmUnitGradOpCUDAKernel<double>);
|