You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
6.3 KiB
170 lines
6.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/lod_tensor.h"
|
|
#include "paddle/framework/tensor.h"
|
|
#include "paddle/platform/device_context.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CopyMatrixRowsFunctor {
|
|
public:
|
|
// If is_src_index is true,
|
|
// copy the indexed rows of input src to the output dst.
|
|
// If is_src_index is false,
|
|
// copy the input src to the indexed rows of output dst.
|
|
// The indexed rows are based on the input index.
|
|
void operator()(const DeviceContext& context, const framework::Tensor& src,
|
|
const size_t* index, framework::Tensor& dst,
|
|
bool is_src_index);
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class LoDTensor2BatchFunctor {
|
|
// Calculate the length of each sequence and
|
|
// sort sequence index by the length.
|
|
// example: sequences = {s0, s1, s2}
|
|
// s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
|
|
// seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
|
|
//
|
|
struct SeqInfo {
|
|
SeqInfo(int start, int length, int seq_idx)
|
|
: start(start), length(length), seq_idx(seq_idx) {}
|
|
int start;
|
|
int length;
|
|
int seq_idx;
|
|
};
|
|
|
|
public:
|
|
void operator()(const DeviceContext& context,
|
|
const framework::LoDTensor& lod_tensor,
|
|
framework::LoDTensor& batch, bool is_cal_batch_lod,
|
|
bool is_reverse = false) const {
|
|
if (!is_cal_batch_lod) {
|
|
auto lods = batch.lod();
|
|
PADDLE_ENFORCE_GT(lods.size(), 2UL);
|
|
PADDLE_ENFORCE_EQ(lods[1].size(),
|
|
static_cast<size_t>(lod_tensor.dims()[0]));
|
|
CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
|
|
to_batch(context, lod_tensor, lods[1].data(), batch, true);
|
|
return;
|
|
}
|
|
|
|
auto lods = lod_tensor.lod();
|
|
auto lod = lods[0];
|
|
PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now.");
|
|
|
|
std::vector<SeqInfo> seq_info;
|
|
for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
|
|
int length = lod[seq_id + 1] - lod[seq_id];
|
|
seq_info.emplace_back(lod[seq_id], length, seq_id);
|
|
}
|
|
|
|
std::sort(seq_info.begin(), seq_info.end(),
|
|
[](SeqInfo a, SeqInfo b) { return a.length > b.length; });
|
|
|
|
// Calculate the start position of each batch.
|
|
// example: sequences = {s0, s1, s2}
|
|
// s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
|
|
// num_batch = 5,
|
|
// batchIndex = {b0, b1, b2, b3, b4}
|
|
// b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
|
|
// batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
|
|
// batch_start_positions[0] = len(b0)
|
|
// batch_start_positions[1] = len(b0) + len(b1)
|
|
// batch_start_positions[2] = len(b0) + len(b1) + len(b2)
|
|
// ...
|
|
// seq2batch_idx[12] = {4, 0, 9,
|
|
// 5, 1, 10,
|
|
// 6, 2, 11,
|
|
// 7, 3,
|
|
// 8}
|
|
// seq_order = {1, 0, 2}, the sort order.
|
|
// where 1 is the second sequence,
|
|
// 0 is the first sequence,
|
|
// 2 is the third sequence.
|
|
// The num_batch represents batch size after rearranging the
|
|
// input LodTensor. It is also the maximum length of input sequence.
|
|
|
|
paddle::framework::LoD batch_lods;
|
|
batch_lods.emplace_back(std::vector<size_t>{0});
|
|
batch_lods.emplace_back(std::vector<size_t>{0});
|
|
batch_lods.emplace_back(std::vector<size_t>{0});
|
|
|
|
// batch_lods[0] is the start positions for batch LoDTensor
|
|
int num_batch = seq_info[0].length;
|
|
batch_lods[0].resize(static_cast<size_t>(num_batch + 1));
|
|
// batch_lods[1] is the raw index in the input LoDTensor
|
|
batch_lods[1].resize(static_cast<size_t>(lod_tensor.dims()[0]));
|
|
// batch_lods[2] is the sort order for the input LoDTensor.
|
|
batch_lods[2].resize(seq_info.size());
|
|
|
|
size_t* batch_starts = batch_lods[0].data();
|
|
size_t* seq2batch_idx = batch_lods[1].data();
|
|
batch_starts[0] = 0;
|
|
for (int n = 0; n < num_batch; n++) {
|
|
auto batch_id = static_cast<int>(batch_starts[n]);
|
|
for (size_t i = 0; i < seq_info.size(); ++i) {
|
|
int seq_len = seq_info[i].length;
|
|
int start = seq_info[i].start;
|
|
if (n < seq_len) {
|
|
seq2batch_idx[batch_id] =
|
|
is_reverse ? start + seq_len - 1 - n : start + n;
|
|
batch_id++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
batch_starts[n + 1] = static_cast<size_t>(batch_id);
|
|
}
|
|
size_t* seq_order = batch_lods[2].data();
|
|
for (size_t i = 0; i < seq_info.size(); ++i) {
|
|
seq_order[i] = seq_info[i].seq_idx;
|
|
}
|
|
batch.set_lod(batch_lods);
|
|
|
|
CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
|
|
to_batch(context, lod_tensor, seq2batch_idx, batch, true);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class Batch2LoDTensorFunctor {
|
|
public:
|
|
void operator()(const DeviceContext& context,
|
|
const framework::LoDTensor& batch,
|
|
framework::LoDTensor& lod_tensor) const {
|
|
auto in_lod = batch.lod();
|
|
PADDLE_ENFORCE_GT(in_lod.size(), 2UL);
|
|
PADDLE_ENFORCE_EQ(in_lod[1].size(),
|
|
static_cast<size_t>(lod_tensor.dims()[0]));
|
|
CopyMatrixRowsFunctor<DeviceContext, T> to_seq;
|
|
size_t* index = in_lod[1].data();
|
|
to_seq(context, batch, index, lod_tensor, false);
|
|
}
|
|
};
|
|
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|