You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
3.6 KiB
107 lines
3.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/platform/hostdevice.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
|
|
template <typename T>
|
|
struct CheckLabelValue {
|
|
HOSTDEVICE T operator()(const T& val) const {
|
|
PADDLE_ASSERT(val == static_cast<T>(0) || val == static_cast<T>(1));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct ModifiedHuberLossForward {
|
|
HOSTDEVICE T operator()(const T& val) const {
|
|
if (val < -1) {
|
|
return -4 * val;
|
|
} else if (val < 1) {
|
|
return (1 - val) * (1 - val);
|
|
} else {
|
|
return static_cast<T>(0);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ModifiedHuberLossKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in0 = context.Input<Tensor>("X");
|
|
auto* in1 = context.Input<Tensor>("Y");
|
|
auto* out0 = context.Output<framework::Tensor>("IntermediateVal");
|
|
auto* out1 = context.Output<framework::Tensor>("Out");
|
|
|
|
out0->mutable_data<T>(context.GetPlace());
|
|
out1->mutable_data<T>(context.GetPlace());
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
|
|
auto x = EigenVector<T>::Flatten(*in0);
|
|
auto y = EigenVector<T>::Flatten(*in1);
|
|
// make sure value's of Y in {0, 1}
|
|
y.unaryExpr(CheckLabelValue<T>());
|
|
auto inter_val = EigenVector<T>::Flatten(*out0);
|
|
// scale y to {-1, +1} and compute x * y
|
|
inter_val.device(place) = x * (2 * y - static_cast<T>(1));
|
|
auto loss = EigenVector<T>::Flatten(*out1);
|
|
loss.device(place) = inter_val.unaryExpr(ModifiedHuberLossForward<T>());
|
|
}
|
|
};
|
|
|
|
// CPU backward kernel
|
|
template <typename T>
|
|
class ModifiedHuberLossGradCPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in0 = context.Input<Tensor>("Y");
|
|
auto* in1 = context.Input<framework::Tensor>("IntermediateVal");
|
|
auto* in2 = context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* out0 = context.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
|
|
if (out0) {
|
|
const T* y_ptr = in0->data<T>();
|
|
const T* inter_val_ptr = in1->data<T>();
|
|
const T* out_grad_ptr = in2->data<T>();
|
|
size_t counts = static_cast<size_t>(framework::product(in1->dims()));
|
|
T* x_grad_ptr = out0->mutable_data<T>(context.GetPlace());
|
|
for (size_t i = 0; i < counts; ++i) {
|
|
if (inter_val_ptr[i] < -1) {
|
|
x_grad_ptr[i] = -4 * (2 * y_ptr[i] - 1) * out_grad_ptr[i];
|
|
} else if (inter_val_ptr[i] < 1) {
|
|
x_grad_ptr[i] = -2 * (1 - inter_val_ptr[i]) * (2 * y_ptr[i] - 1) *
|
|
out_grad_ptr[i];
|
|
} else {
|
|
x_grad_ptr[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|