You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.5 KiB
97 lines
3.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/multiplex_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename Place, typename T>
|
|
class MultiplexGPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const {
|
|
auto ins = ctx.MultiInput<Tensor>("X");
|
|
auto* ids = ctx.Input<Tensor>("Ids");
|
|
auto* out = ctx.Output<Tensor>("Out");
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto rows = ins[0]->dims()[0];
|
|
auto cols = ins[0]->numel() / rows;
|
|
// copy index to cpu
|
|
Tensor index_t_cpu;
|
|
Copy(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu);
|
|
auto* index = index_t_cpu.data<int32_t>();
|
|
auto stream = ctx.cuda_device_context().stream();
|
|
platform::CUDAPlace place = boost::get<platform::CUDAPlace>(ctx.GetPlace());
|
|
for (auto i = 0; i < rows; i++) {
|
|
int32_t k = index[i];
|
|
PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative.");
|
|
PADDLE_ENFORCE_LT((size_t)k, ins.size(),
|
|
"index exceeds the number of candidate tensors.");
|
|
memory::Copy(place, out->data<T>() + i * cols, place,
|
|
ins[k]->data<T>() + i * cols, cols * sizeof(T), stream);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class MultiplexGradGPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const {
|
|
auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto ins = ctx.MultiInput<Tensor>("X");
|
|
auto* ids = ctx.Input<Tensor>("Ids");
|
|
auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
|
|
for (size_t i = 0; i < d_ins.size(); i++) {
|
|
if (d_ins[i]) {
|
|
d_ins[i]->mutable_data<T>(ctx.GetPlace());
|
|
auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
|
|
t.device(*ctx.template device_context<Place>().eigen_device()) =
|
|
t.constant(static_cast<T>(0));
|
|
}
|
|
}
|
|
|
|
auto rows = ins[0]->dims()[0];
|
|
auto cols = ins[0]->numel() / rows;
|
|
// copy index to cpu
|
|
Tensor index_t_cpu;
|
|
Copy(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu);
|
|
auto* index = index_t_cpu.data<int32_t>();
|
|
|
|
auto stream = ctx.cuda_device_context().stream();
|
|
platform::CUDAPlace place = boost::get<platform::CUDAPlace>(ctx.GetPlace());
|
|
for (auto i = 0; i < rows; i++) {
|
|
size_t k = static_cast<size_t>(index[i]);
|
|
if (d_ins[k]) {
|
|
memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
|
|
d_out->data<T>() + i * cols, cols * sizeof(T), stream);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
multiplex,
|
|
ops::MultiplexGPUKernel<paddle::platform::CUDADeviceContext, float>);
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
multiplex_grad,
|
|
ops::MultiplexGradGPUKernel<paddle::platform::CUDADeviceContext, float>);
|