You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
7.6 KiB
187 lines
7.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/nce_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class NCEOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Input"));
|
|
PADDLE_ENFORCE(ctx->HasInput("Label"));
|
|
PADDLE_ENFORCE(ctx->HasInput("Weight"));
|
|
PADDLE_ENFORCE(ctx->HasOutput("Cost"));
|
|
PADDLE_ENFORCE(ctx->HasOutput("SampleLogits"));
|
|
PADDLE_ENFORCE(ctx->HasOutput("SampleLabels"));
|
|
|
|
auto x_dims = ctx->GetInputDim("Input");
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]);
|
|
int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1;
|
|
if (ctx->HasInput("Bias")) {
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Weight")[0],
|
|
ctx->GetInputDim("Bias")[0]);
|
|
}
|
|
auto num_neg_samples = ctx->Attrs().Get<int>("num_neg_samples");
|
|
auto num_total_classes = ctx->Attrs().Get<int>("num_total_classes");
|
|
std::vector<int> custom_neg_classes =
|
|
ctx->Attrs().Get<std::vector<int>>("custom_neg_classes");
|
|
PADDLE_ENFORCE_EQ(num_total_classes, ctx->GetInputDim("Weight")[0]);
|
|
if (custom_neg_classes.size() > 0) {
|
|
PADDLE_ENFORCE_EQ(custom_neg_classes.size(),
|
|
static_cast<size_t>(num_neg_samples));
|
|
}
|
|
// set dims of output(Out)
|
|
std::vector<int64_t> out_dims;
|
|
out_dims.push_back(x_dims[0]);
|
|
out_dims.push_back(1);
|
|
ctx->SetOutputDim("Cost", framework::make_ddim(out_dims));
|
|
|
|
// set dims of output(SampleOut)
|
|
std::vector<int64_t> sample_out_dims;
|
|
sample_out_dims.push_back(x_dims[0]);
|
|
sample_out_dims.push_back(num_neg_samples + num_true_classes);
|
|
ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
|
|
ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
NCEOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim].");
|
|
AddInput(
|
|
"Label",
|
|
"(Tensor) A tensor of shape [batch_size, num_true_class]. "
|
|
"'num_true_class' is the number of target classes in each sample."
|
|
"The number of target classes per sample should be same. "
|
|
"If you have a variable number of target classes, "
|
|
"you can pad them out to a constant number by either repeating them"
|
|
" or by padding with an otherwise unused class.)");
|
|
AddInput("Weight",
|
|
"(Tensor) A tensor of shape [num_class, dim]. 'num_class' is the "
|
|
"total number of class.");
|
|
AddInput(
|
|
"Bias",
|
|
"(Tensor) A tensor of shape [num_class, 1]. 'num_class' is the total "
|
|
"number of class. It is a dispensable input.")
|
|
.AsDispensable();
|
|
AddInput("SampleWeight",
|
|
"(Tensor) A tensor of shape [batch_size, 1] storing a weight for "
|
|
"each sample. And it is a dispensable input. The default value of "
|
|
"sample is 1.")
|
|
.AsDispensable();
|
|
AddOutput("Cost",
|
|
"(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
|
|
AddOutput("SampleLogits",
|
|
"An intermediate tensor of shape[batch_size, num_neg_samples + "
|
|
"num_pos_samples]."
|
|
"This tensor is output of forward kernel and used in backward "
|
|
"kernel to compute grads."
|
|
"Given X is the dot product of input tensor and sampled labels' "
|
|
"weights."
|
|
"Then 'SampleLogits' is sigmoid(X).")
|
|
.AsIntermediate();
|
|
AddOutput("SampleLabels",
|
|
"An intermediate tensor of shape[batch_size, num_neg_samples + "
|
|
"num_pos_samples]."
|
|
"This tensor is output of forward kernel and used in backward "
|
|
"kernel to compute grads."
|
|
"")
|
|
.AsIntermediate();
|
|
AddAttr<int>("num_total_classes",
|
|
"Total number of classes in all samples.");
|
|
AddAttr<int>("num_neg_samples",
|
|
"The number of negative classes. The default value is 10.")
|
|
.SetDefault(10);
|
|
AddAttr<std::vector<int>>("custom_neg_classes",
|
|
"This attribute only be used in unitest. Classes "
|
|
"in this list wiil be used as negative classes "
|
|
"for every samples. Under normal conditions, "
|
|
"user should avoid setting this attribute.");
|
|
AddComment(R"DOC(
|
|
Compute and return the noise-contrastive estimation training loss.
|
|
See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf).
|
|
By default this operator uses a uniform distribution for sampling.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class NCEOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Input"));
|
|
PADDLE_ENFORCE(ctx->HasInput("Weight"));
|
|
PADDLE_ENFORCE(ctx->HasInput("Cost"));
|
|
PADDLE_ENFORCE(ctx->HasInput("SampleLogits"));
|
|
PADDLE_ENFORCE(ctx->HasInput("SampleLabels"));
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cost")),
|
|
"The input(Out@GRAD) should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("Input");
|
|
auto x_grad_name = framework::GradVarName("Input");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
|
|
auto w_dims = ctx->GetInputDim("Weight");
|
|
auto w_grad_name = framework::GradVarName("Weight");
|
|
if (ctx->HasOutput(w_grad_name)) {
|
|
ctx->SetOutputDim(w_grad_name, w_dims);
|
|
}
|
|
|
|
auto bias_grad_name = framework::GradVarName("Bias");
|
|
if (ctx->HasOutput(bias_grad_name)) {
|
|
auto bias_dims = ctx->GetInputDim("Bias");
|
|
ctx->SetOutputDim(bias_grad_name, bias_dims);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(nce, ops::NCEOp, ops::NCEOpMaker, nce_grad, ops::NCEOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
|
|
ops::NCEKernel<paddle::platform::CPUPlace, double>);
|
|
REGISTER_OP_CPU_KERNEL(nce_grad,
|
|
ops::NCEGradKernel<paddle::platform::CPUPlace, float>,
|
|
ops::NCEGradKernel<paddle::platform::CPUPlace, double>);
|