You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
4.5 KiB
141 lines
4.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/pad_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class PadOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of PadOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of PadOp should not be null.");
|
|
|
|
auto x_dim = ctx->GetInputDim("X");
|
|
auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
|
PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
|
|
"Size of paddings should be equal to 2 * dimension size "
|
|
"of input tensor.");
|
|
std::vector<int64_t> out_dims(x_dim.size());
|
|
for (int i = 0; i < x_dim.size(); ++i) {
|
|
out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
|
|
if (out_dims[0] == x_dim[0]) {
|
|
// Only pass LoD when the first dimension is equal between
|
|
// output and input.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
};
|
|
|
|
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
PadOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"The input of pad op. "
|
|
"The input should be a k-D tensor(k > 0 and k < 7)");
|
|
AddOutput("Out",
|
|
"The output of pad op. "
|
|
"A tensor with the same shape as X.");
|
|
AddAttr<std::vector<int>>(
|
|
"paddings",
|
|
"(vector<int>) "
|
|
"A list<int> to describe the padding rules for each dimension. "
|
|
"For 2-D image tensor, paddings=[0, 1, 2, 3] means "
|
|
"padding 0 row to top, 1 row to bottom, 2 columns to left "
|
|
"and 3 columns to right. Size of paddings should be equal to "
|
|
"2 * dimension size of the input tensor.");
|
|
AddAttr<float>("pad_value",
|
|
"(float, default 0.0) "
|
|
"The value to fill the padded areas.")
|
|
.SetDefault(0.0f);
|
|
AddComment(R"DOC(
|
|
Pad Operator.
|
|
|
|
Pad input into output, as specified by paddings and pad_value.
|
|
The input should be a k-D tensor(k > 0 and k < 7). As an example:
|
|
|
|
Given:
|
|
|
|
X = [[1, 2],
|
|
[3, 4]],
|
|
|
|
paddings = [0, 1, 1, 2],
|
|
|
|
and
|
|
|
|
pad_value = 0,
|
|
|
|
we have:
|
|
|
|
Out = [[0, 1, 2, 0, 0]
|
|
[0, 3, 4, 0, 0]
|
|
[0, 0, 0, 0, 0]]
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class PadOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
class PadOpGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto* bind = new framework::OpDesc();
|
|
bind->SetInput("X", Input("X"));
|
|
bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
bind->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
bind->SetAttrMap(Attrs());
|
|
bind->SetType("pad_grad");
|
|
return std::unique_ptr<framework::OpDesc>(bind);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(pad, ops::PadOp, ops::PadOpMaker, ops::PadOpGradMaker);
|
|
REGISTER_OPERATOR(pad_grad, ops::PadOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
pad, ops::PadKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
pad_grad, ops::PadGradKernel<paddle::platform::CPUDeviceContext, float>);
|