You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/parallel_do_op.cc

321 lines
11 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <vector>
#include "paddle/framework/executor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/threadpool.h"
namespace paddle {
namespace operators {
static constexpr char kInputs[] = "inputs";
static constexpr char kParameters[] = "parameters";
static constexpr char kPlaces[] = "places";
static constexpr char kOutputs[] = "outputs";
static constexpr char kParallelScopes[] = "parallel_scopes";
static constexpr char kParallelBlock[] = "sub_block";
using LoDTensor = framework::LoDTensor;
static void SplitTensorAndMoveTensorToScopes(
const framework::Scope &scope, std::vector<framework::Scope *> *sub_scopes,
const std::vector<platform::Place> &places,
const std::vector<std::string> &names) {
size_t num_sub_scopes = 0;
for (auto &argu : names) {
auto *var = scope.FindVar(argu);
const auto &tensor = var->Get<LoDTensor>();
auto lod_tensors = tensor.SplitLoDTensor(places);
for (auto &lod : lod_tensors) {
VLOG(3) << lod.dims();
}
if (num_sub_scopes == 0) {
num_sub_scopes = lod_tensors.size();
} else {
PADDLE_ENFORCE_EQ(num_sub_scopes, lod_tensors.size());
}
PADDLE_ENFORCE_NE(num_sub_scopes, 0);
if (sub_scopes->size() == 0) {
sub_scopes->reserve(num_sub_scopes);
for (size_t i = 0; i < num_sub_scopes; ++i) {
sub_scopes->emplace_back(&scope.NewScope());
}
}
for (size_t i = 0; i < lod_tensors.size(); ++i) {
*(*sub_scopes)[i]->Var(argu)->GetMutable<LoDTensor>() = lod_tensors[i];
}
}
}
void WaitOnPlaces(const std::vector<platform::Place> places) {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
for (auto &place : places) {
auto &dev_ctx = *pool.Get(place);
dev_ctx.Wait();
}
}
class ParallelDoOp : public framework::OperatorBase {
public:
ParallelDoOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::Place &place) const override {
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
auto *program = block->Program();
auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
auto &sub_scopes = *scope.FindVar(Output(kParallelScopes))
->GetMutable<std::vector<framework::Scope *>>();
// split input
SplitTensorAndMoveTensorToScopes(scope, &sub_scopes, places,
Inputs(kInputs));
// copy parameter
for (auto &param : Inputs(kParameters)) {
PADDLE_ENFORCE(scope.FindVar(param)->IsType<LoDTensor>(),
"Only support parameter type as LoDTensor");
auto &src = scope.FindVar(param)->Get<LoDTensor>();
for (size_t i = 0; i < sub_scopes.size(); ++i) {
auto &place = places[i];
auto *sub_scope = sub_scopes[i];
auto *dst = sub_scope->Var(param)->GetMutable<LoDTensor>();
framework::Copy(src, place, dst);
}
}
WaitOnPlaces(places);
std::vector<std::future<void>> workers;
workers.reserve(places.size());
for (size_t place_idx = 0; place_idx < sub_scopes.size(); ++place_idx) {
auto &place = places[place_idx];
auto *cur_scope = sub_scopes[place_idx];
workers.emplace_back(framework::Async([program, cur_scope, place, block] {
framework::Executor executor(place);
executor.Run(*program, cur_scope, block->ID(),
false /*create_local_scope*/);
}));
}
for (auto &worker : workers) {
worker.wait();
}
WaitOnPlaces(places);
// merge output
for (auto &o_name : Outputs(kOutputs)) {
std::vector<const framework::LoDTensor *> lod_tensors;
lod_tensors.reserve(sub_scopes.size());
for (auto *sub_scope : sub_scopes) {
lod_tensors.emplace_back(&sub_scope->FindVar(o_name)->Get<LoDTensor>());
}
auto *lod_tensor_to_be_merged =
scope.FindVar(o_name)->GetMutable<LoDTensor>();
lod_tensor_to_be_merged->MergeLoDTensor(lod_tensors, dev_ctx.GetPlace());
}
WaitOnPlaces(places);
}
};
class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
ParallelDoOpProtoMaker(OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(kInputs, "").AsDuplicable();
AddInput(kParameters, "").AsDuplicable();
AddInput(kPlaces, "");
AddOutput(kOutputs, "").AsDuplicable();
AddOutput(kParallelScopes, "");
AddAttr<framework::BlockDesc *>(kParallelBlock, "");
AddComment(R"DOC(
ParallelDo Operator.
)DOC");
}
};
class ParallelDoGradOp : public framework::OperatorBase {
public:
ParallelDoGradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::Place &place) const override {
auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
auto *program = block->Program();
auto &sub_scopes = scope.FindVar(Input(kParallelScopes))
->Get<std::vector<framework::Scope *>>();
auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
// feed output@grad
SplitTensorAndMoveTensorToScopes(
scope, const_cast<std::vector<framework::Scope *> *>(&sub_scopes),
places, Inputs(framework::GradVarName(kOutputs)));
WaitOnPlaces(places);
// exe run
std::vector<std::future<void>> workers;
for (size_t i = 0; i < sub_scopes.size(); ++i) {
auto &place = places[i];
auto *cur_scope = sub_scopes[i];
// execute
workers.emplace_back(framework::Async([program, cur_scope, place, block] {
framework::Executor executor(place);
executor.Run(*program, cur_scope, block->ID(),
false /*create_local_scope*/);
}));
}
for (auto &worker : workers) {
worker.wait();
}
WaitOnPlaces(places);
// merge grad
for (auto &s : Outputs(framework::GradVarName(kParameters))) {
auto &result = sub_scopes[0]->FindVar(s)->Get<LoDTensor>();
std::string tmp_name;
auto *tmp = sub_scopes[0]->Var(&tmp_name)->GetMutable<LoDTensor>();
for (size_t i = 1; i < sub_scopes.size(); ++i) {
auto &tensor_to_merge = sub_scopes[i]->FindVar(s)->Get<LoDTensor>();
if (!(places[i] == places[0])) {
framework::Copy(tensor_to_merge, places[0], tmp);
} else {
tmp->ShareDataWith(tensor_to_merge);
}
auto sum_op = framework::OpRegistry::CreateOp(
"sum", {{"X", {s, tmp_name}}}, {{"Out", {s}}},
framework::AttributeMap{});
sum_op->Run(*sub_scopes[0], places[0]);
WaitOnPlaces(places);
}
VLOG(3) << result;
framework::Copy(result, place, scope.FindVar(s)->GetMutable<LoDTensor>());
}
}
};
std::ostream &operator<<(std::ostream &sout,
const std::vector<std::string> &strs) {
std::copy(strs.begin(), strs.end(),
std::ostream_iterator<std::string>(sout, ","));
return sout;
}
class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
virtual std::unique_ptr<framework::OpDesc> Apply() const {
auto *grad = new framework::OpDesc();
grad->SetType("parallel_do_grad");
for (auto &input_param : this->InputNames()) {
VLOG(3) << input_param;
grad->SetInput(input_param, this->Input(input_param));
if (input_param != kPlaces) {
grad->SetOutput(framework::GradVarName(input_param),
this->InputGrad(input_param, false));
}
}
for (auto &output_param : this->OutputNames()) {
if (output_param == kParallelScopes) {
grad->SetInput(output_param, this->Output(output_param));
grad->SetInput(framework::GradVarName(output_param),
this->Output(output_param));
} else {
grad->SetInput(output_param, this->Output(output_param));
grad->SetInput(framework::GradVarName(output_param),
this->OutputGrad(output_param));
}
}
grad->SetAttrMap(this->Attrs());
grad->SetBlockAttr(kParallelBlock, *grad_block_[0]);
return std::unique_ptr<framework::OpDesc>(grad);
}
};
class ParallelDoGradOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
std::vector<std::string> input{kParameters, kInputs};
std::vector<std::string> output{kOutputs};
PADDLE_ENFORCE(ctx->HasInputs(kParameters));
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)));
PADDLE_ENFORCE(ctx->HasInput(kInputs));
for (auto &s : output) {
PADDLE_ENFORCE(ctx->HasInputs(s));
}
ctx->SetOutputsDim(framework::GradVarName(kParameters),
ctx->GetInputsDim(kParameters));
auto i_dims = ctx->GetInputsDim(kInputs);
auto ig_names = ctx->Outputs(framework::GradVarName(kInputs));
for (size_t i = 0; i < ig_names.size(); ++i) {
auto &ig_name = ig_names[i];
if (ig_name == framework::kEmptyVarName) {
continue;
}
ctx->SetDims({ig_name}, {i_dims[i]});
}
if (ctx->HasInputs(kParameters)) {
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)));
ctx->SetOutputsDim(framework::GradVarName(kParameters),
ctx->GetInputsDim(kParameters));
}
}
};
} // namespace operators
} // namespace paddle
REGISTER_OPERATOR(parallel_do, paddle::operators::ParallelDoOp,
paddle::operators::ParallelDoOpProtoMaker,
paddle::operators::ParallelDoGradOpDescMaker);
REGISTER_OPERATOR(parallel_do_grad, paddle::operators::ParallelDoGradOp,
paddle::operators::ParallelDoGradOpShapeInference);