You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
5.0 KiB
135 lines
5.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/reshape_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ReshapeOp : public framework::OperatorWithKernel {
|
|
public:
|
|
ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
// input check
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of ReshapeOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of ReshapeOp should not be null.");
|
|
|
|
auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
|
PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty.");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
|
|
std::vector<size_t> neg_dims_idx;
|
|
// set some dimension to -1 if it is unknown
|
|
const int unknown_size = -1;
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
PADDLE_ENFORCE(shape[i] > 0 || shape[i] == unknown_size,
|
|
"Each dimension of Attr(shape) must be positive or %d.",
|
|
unknown_size);
|
|
if (shape[i] == unknown_size) {
|
|
neg_dims_idx.push_back(i);
|
|
PADDLE_ENFORCE(neg_dims_idx.size() <= 1,
|
|
"Only one dimension of Attr(shape) can be unknown.");
|
|
}
|
|
}
|
|
|
|
int64_t capacity =
|
|
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
|
|
int64_t in_size = framework::product(x_dims);
|
|
if (neg_dims_idx.size() == 1) {
|
|
// dim infer
|
|
shape[neg_dims_idx[0]] = in_size / (-capacity);
|
|
// recalculate capacity
|
|
capacity = shape[neg_dims_idx[0]] * (-capacity);
|
|
}
|
|
// capacity check
|
|
PADDLE_ENFORCE(capacity == in_size,
|
|
"The size of Input(X) mismatches with Attr(shape).");
|
|
// resize output
|
|
std::vector<int64_t> shape_int64(shape.size(), 0);
|
|
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
|
|
[](int a) { return static_cast<int64_t>(a); });
|
|
auto out_dims = framework::make_ddim(shape_int64);
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
if (shape[0] == x_dims[0]) {
|
|
// Only pass LoD when the first dimension is equal between
|
|
// output and input.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
};
|
|
|
|
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "The input tensor of reshape operator.");
|
|
AddOutput("Out", "The output tensor of reshape operator.");
|
|
AddAttr<std::vector<int>>("shape",
|
|
"(vector<int>) "
|
|
"Target shape of reshape operator.");
|
|
AddComment(R"DOC(
|
|
Reshape Operator.
|
|
|
|
Reshape Input(X) into the shape specified by Attr(shape).
|
|
|
|
An example:
|
|
Given a 2-D tensor X with 2 rows and 2 columns
|
|
|
|
[[1, 2], [3, 4]]
|
|
|
|
and target shape = [1, 4], the reshape operator will transform
|
|
the tensor X into a 2-D tensor:
|
|
|
|
[[1, 2, 3, 4]]
|
|
|
|
One dimension in the target shape can be set -1, representing that its
|
|
size is unknown. In this case, the real dimension will be infered from
|
|
the original shape of Input(X) and other dimensions in the target shape.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ReshapeGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
ReshapeGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) shouldn't be null.");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
|
|
ops::ReshapeGradOp);
|
|
REGISTER_OP_CPU_KERNEL(reshape,
|
|
ops::ReshapeKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
reshape_grad, ops::ReshapeGradKernel<paddle::platform::CPUPlace, float>);
|