You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
4.7 KiB
134 lines
4.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <thrust/device_vector.h>
|
|
#include <thrust/host_vector.h>
|
|
#include "paddle/operators/sequence_erase_op.h"
|
|
#include "paddle/platform/cuda_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using platform::PADDLE_CUDA_NUM_THREADS;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
template <typename T>
|
|
__global__ void LabelErasedIdx(const T* in_dat, const int in_len,
|
|
const T* tokens, const int tokens_len,
|
|
int* num_erased) {
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (index < in_len) {
|
|
int erased = 0;
|
|
for (int i = 0; i < tokens_len; ++i) {
|
|
if (in_dat[index] == tokens[i]) {
|
|
erased = 1;
|
|
}
|
|
}
|
|
num_erased[index + 1] = erased;
|
|
if (index == 0) {
|
|
num_erased[0] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void GetOutLod(const T* num_erased, const int* in_lod,
|
|
const int lod_len, int* out_lod0) {
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (index < lod_len) {
|
|
out_lod0[index] = in_lod[index] - num_erased[in_lod[index]];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void SetOutput(const T* in_dat, const int in_len,
|
|
const int* num_erased, T* out_dat) {
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (index < in_len) {
|
|
if (in_dat[index] != in_dat[index + 1]) {
|
|
out_dat[index - num_erased[index]] = in_dat[index];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class SequenceEraseOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<LoDTensor>("X");
|
|
auto* out = ctx.Output<LoDTensor>("Out");
|
|
|
|
auto lod = in->lod();
|
|
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
|
|
PADDLE_ENFORCE_EQ(lod[0].back(), (size_t)in->numel(),
|
|
"The actual size mismatches with the LoD information.");
|
|
auto tokens = ctx.Attr<std::vector<T>>("tokens");
|
|
auto tokens_len = tokens.size();
|
|
auto in_len = in->numel();
|
|
auto in_dat = in->data<T>();
|
|
auto lod0 = lod[0];
|
|
|
|
thrust::host_vector<T> host_tokens(tokens_len);
|
|
for (size_t i = 0; i < tokens.size(); ++i) {
|
|
host_tokens[i] = tokens[i];
|
|
}
|
|
thrust::device_vector<T> dev_tokens = host_tokens;
|
|
thrust::device_vector<int> num_erased(in_len + 1);
|
|
|
|
T* dev_tokens_ptr = thrust::raw_pointer_cast(dev_tokens.data());
|
|
int* num_erased_ptr = thrust::raw_pointer_cast(num_erased.data());
|
|
|
|
auto stream = ctx.cuda_device_context().stream();
|
|
LabelErasedIdx<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
in_dat, in_len, dev_tokens_ptr, tokens_len, num_erased_ptr);
|
|
thrust::inclusive_scan(num_erased.begin() + 1, num_erased.end(),
|
|
num_erased.begin() + 1);
|
|
|
|
// Calc LoD
|
|
auto lod_len = lod0.size();
|
|
thrust::host_vector<int> host_lod(lod_len);
|
|
for (size_t i = 0; i < lod_len; ++i) {
|
|
host_lod[i] = lod0[i];
|
|
}
|
|
thrust::device_vector<int> dev_in_lod = host_lod;
|
|
thrust::device_vector<int> dev_out_lod(lod_len);
|
|
int* dev_in_lod_ptr = thrust::raw_pointer_cast(dev_in_lod.data());
|
|
int* dev_out_lod_ptr = thrust::raw_pointer_cast(dev_out_lod.data());
|
|
GetOutLod<<<(lod_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
num_erased_ptr, dev_in_lod_ptr, lod_len, dev_out_lod_ptr);
|
|
thrust::host_vector<int> host_out_lod = dev_out_lod;
|
|
std::vector<int> out_lod0(lod_len, 0);
|
|
for (size_t i = 0; i < lod_len; i++) {
|
|
out_lod0[i] = host_out_lod[i];
|
|
}
|
|
framework::LoD out_lod;
|
|
out_lod.push_back(out_lod0);
|
|
out->set_lod(out_lod);
|
|
|
|
// Set output
|
|
out->Resize({out_lod0.back(), 1});
|
|
auto out_dat = out->mutable_data<T>(ctx.GetPlace());
|
|
SetOutput<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_dat, in_len,
|
|
num_erased_ptr, out_dat);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OP_CUDA_KERNEL(sequence_erase,
|
|
paddle::operators::SequenceEraseOpCUDAKernel<int32_t>);
|