You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.3 KiB
174 lines
6.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/math/math_function.h"
|
|
#include "paddle/operators/strided_memcpy.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
using LoD = framework::LoD;
|
|
|
|
template <typename T>
|
|
inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data,
|
|
const int64_t* length_data) {
|
|
auto out_lod = in.lod();
|
|
size_t lod_offset = 0;
|
|
|
|
auto n = in.lod()[0].size() - 1;
|
|
out_lod[0][0] = 0;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
lod_offset += length_data[i];
|
|
out_lod[0][i + 1] = lod_offset;
|
|
}
|
|
return out_lod;
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequenceSliceOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<LoDTensor>("X");
|
|
auto* offset = ctx.Input<Tensor>("Offset");
|
|
auto* length = ctx.Input<Tensor>("Length");
|
|
auto* out = ctx.Output<LoDTensor>("Out");
|
|
|
|
auto lod = in->lod();
|
|
auto n = lod[0].size() - 1;
|
|
|
|
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
|
|
PADDLE_ENFORCE_EQ(
|
|
n, static_cast<size_t>(length->dims()[0]),
|
|
"The size of input-sequence and length-array should be the same");
|
|
PADDLE_ENFORCE_EQ(
|
|
n, static_cast<size_t>(offset->dims()[0]),
|
|
"The size of input-sequence and offset-array should be the same");
|
|
|
|
const int64_t* offset_data = offset->data<int64_t>();
|
|
const int64_t* length_data = length->data<int64_t>();
|
|
framework::Tensor offset_cpu;
|
|
framework::Tensor length_cpu;
|
|
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
|
|
framework::Copy(*offset, platform::CPUPlace(), ctx.device_context(),
|
|
&offset_cpu);
|
|
offset_data = offset_cpu.data<int64_t>();
|
|
|
|
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
|
|
framework::Copy(*length, platform::CPUPlace(), ctx.device_context(),
|
|
&length_cpu);
|
|
length_data = length_cpu.data<int64_t>();
|
|
}
|
|
|
|
for (size_t i = 0; i < n; ++i) {
|
|
PADDLE_ENFORCE_LT(0, offset_data[i],
|
|
"The offset[%d] must greater than zero.", i);
|
|
PADDLE_ENFORCE_LT(0, length_data[i],
|
|
"The length[%d] must greater than zero.", i);
|
|
PADDLE_ENFORCE_LT(lod[0][i] + offset_data[i] + length_data[i],
|
|
lod[0][i + 1], "The target tensor's length overflow.");
|
|
}
|
|
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
auto out_lod = SequenceSliceLoD(*in, offset_data, length_data);
|
|
auto out_dims = in->dims();
|
|
out_dims[0] = out_lod[0][out_lod[0].size() - 1];
|
|
out->Resize(out_dims);
|
|
out->set_lod(out_lod);
|
|
|
|
auto in_stride = framework::stride(in->dims());
|
|
auto out_stride = framework::stride(out->dims());
|
|
|
|
size_t out_offset = 0;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
Tensor in_t = in->Slice(
|
|
static_cast<int>(lod[0][i] + offset_data[i]),
|
|
static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));
|
|
|
|
StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride,
|
|
in_t.dims(), out_stride, out->data<T>() + out_offset);
|
|
out_offset += length_data[i] * in_stride[0];
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequenceSliceGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<LoDTensor>("X");
|
|
auto* offset = ctx.Input<Tensor>("Offset");
|
|
auto* length = ctx.Input<Tensor>("Length");
|
|
auto* out_grad =
|
|
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
|
auto* x_grad =
|
|
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
|
|
|
const int64_t* offset_data = offset->data<int64_t>();
|
|
const int64_t* length_data = length->data<int64_t>();
|
|
framework::Tensor offset_cpu;
|
|
framework::Tensor length_cpu;
|
|
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
|
|
framework::Copy(*offset, platform::CPUPlace(), ctx.device_context(),
|
|
&offset_cpu);
|
|
offset_data = offset_cpu.data<int64_t>();
|
|
|
|
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
|
|
framework::Copy(*length, platform::CPUPlace(), ctx.device_context(),
|
|
&length_cpu);
|
|
length_data = length_cpu.data<int64_t>();
|
|
}
|
|
|
|
auto lod = in->lod();
|
|
auto out_lod = out_grad->lod();
|
|
|
|
if (x_grad) {
|
|
x_grad->mutable_data<T>(ctx.GetPlace());
|
|
x_grad->set_lod(in->lod());
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
set_zero(ctx.template device_context<DeviceContext>(), x_grad,
|
|
static_cast<T>(0));
|
|
|
|
auto out_grad_stride = framework::stride(out_grad->dims());
|
|
|
|
for (size_t i = 0; i < out_lod[0].size() - 1; ++i) {
|
|
Tensor out_grad_t =
|
|
out_grad->Slice(static_cast<int>(out_lod[0][i]),
|
|
static_cast<int>(out_lod[0][i + 1]));
|
|
auto out_grad_stride = framework::stride(out_grad_t.dims());
|
|
|
|
auto x_grad_stride = framework::stride(x_grad->dims());
|
|
|
|
Tensor x_grad_t = x_grad->Slice(
|
|
static_cast<int>(lod[0][i] + offset_data[i]),
|
|
static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));
|
|
|
|
StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>(),
|
|
out_grad_stride, out_grad_t.dims(), x_grad_stride,
|
|
x_grad_t.data<T>());
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|