You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
3.5 KiB
96 lines
3.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/math/softmax.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequenceSoftmaxKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* x = ctx.Input<LoDTensor>("X");
|
|
auto* out = ctx.Output<LoDTensor>("Out");
|
|
|
|
auto lod = x->lod();
|
|
auto dims = x->dims();
|
|
|
|
const size_t level = lod.size() - 1;
|
|
PADDLE_ENFORCE_EQ(dims[0], static_cast<int64_t>(lod[level].back()),
|
|
"The first dimension of Input(X) should be equal to the "
|
|
"sum of all sequences' lengths.");
|
|
PADDLE_ENFORCE_EQ(dims[0], x->numel(),
|
|
"The width of each timestep in Input(X) of "
|
|
"SequenceSoftmaxOp should be 1.");
|
|
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
for (int i = 0; i < static_cast<int>(lod[level].size()) - 1; ++i) {
|
|
int start_pos = static_cast<int>(lod[level][i]);
|
|
int end_pos = static_cast<int>(lod[level][i + 1]);
|
|
Tensor x_i = x->Slice(start_pos, end_pos);
|
|
Tensor out_i = out->Slice(start_pos, end_pos);
|
|
|
|
// Reshape from (end_pos - start_pos) x 1UL to 1UL x (end_pos - start_pos)
|
|
framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos});
|
|
x_i.Resize(dims_i);
|
|
out_i.Resize(dims_i);
|
|
math::SoftmaxFunctor<DeviceContext, T>()(
|
|
ctx.template device_context<DeviceContext>(), &x_i, &out_i);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequenceSoftmaxGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* out = ctx.Input<LoDTensor>("Out");
|
|
auto* out_grad = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
|
|
auto* x = ctx.Input<LoDTensor>("X");
|
|
auto* x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
|
|
|
|
auto lod = x->lod();
|
|
const size_t level = lod.size() - 1;
|
|
|
|
x_grad->mutable_data<T>(ctx.GetPlace());
|
|
for (int i = 0; i < static_cast<int>(lod[level].size()) - 1; ++i) {
|
|
int start_pos = static_cast<int>(lod[level][i]);
|
|
int end_pos = static_cast<int>(lod[level][i + 1]);
|
|
|
|
Tensor out_i = out->Slice(start_pos, end_pos);
|
|
Tensor out_grad_i = out_grad->Slice(start_pos, end_pos);
|
|
Tensor x_grad_i = x_grad->Slice(start_pos, end_pos);
|
|
|
|
// Reshape from (end_pos - start_pos) x 1UL to 1UL x (end_pos - start_pos)
|
|
framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos});
|
|
out_i.Resize(dims_i);
|
|
out_grad_i.Resize(dims_i);
|
|
x_grad_i.Resize(dims_i);
|
|
math::SoftmaxGradFunctor<DeviceContext, T>()(
|
|
ctx.template device_context<DeviceContext>(), &out_i, &out_grad_i,
|
|
&x_grad_i);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|