You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
7.4 KiB
181 lines
7.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
#include "paddle/framework/lod_rank_table.h"
|
|
#include "paddle/framework/lod_tensor.h"
|
|
#include "paddle/operators/array_operator.h"
|
|
#include "paddle/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ShrinkRNNMemoryOp : public ArrayOp {
|
|
public:
|
|
ShrinkRNNMemoryOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: ArrayOp(type, inputs, outputs, attrs) {}
|
|
|
|
void Run(const framework::Scope &scope,
|
|
const platform::Place &place) const override {
|
|
auto *x_var = scope.FindVar(Input("X"));
|
|
PADDLE_ENFORCE(x_var != nullptr, "Input X must be set");
|
|
auto &x_tensor = x_var->Get<framework::LoDTensor>();
|
|
size_t offset = this->GetOffset(scope, place);
|
|
auto *rank_table_var = scope.FindVar(Input("RankTable"));
|
|
PADDLE_ENFORCE(rank_table_var != nullptr, "RankTable must be set");
|
|
auto &rank_table = rank_table_var->Get<framework::LoDRankTable>();
|
|
|
|
auto &rank_items = rank_table.items();
|
|
int dst_num_rows =
|
|
std::lower_bound(rank_items.begin(), rank_items.end(), offset,
|
|
[](const framework::LoDRankTable::TableItem &a,
|
|
size_t b) { return a.length > b; }) -
|
|
rank_items.begin();
|
|
|
|
auto *out_var = scope.FindVar(Output("Out"));
|
|
PADDLE_ENFORCE(out_var != nullptr, "Output(Out) must be set.");
|
|
auto &out_tensor = *out_var->GetMutable<framework::LoDTensor>();
|
|
|
|
size_t height = dst_num_rows;
|
|
|
|
// do shrink for the top level LoD
|
|
if (x_tensor.lod().size() > 0 &&
|
|
x_tensor.lod()[0].size() > static_cast<size_t>(dst_num_rows)) {
|
|
auto lod_offset = framework::GetSubLoDAndAbsoluteOffset(x_tensor.lod(), 0,
|
|
dst_num_rows, 0);
|
|
height = lod_offset.second.second;
|
|
auto out_lod = out_tensor.mutable_lod();
|
|
framework::AppendLoD(out_lod, lod_offset.first);
|
|
}
|
|
|
|
if (dst_num_rows != 0) {
|
|
out_tensor.ShareDataWith(x_tensor.Slice(0, height));
|
|
}
|
|
}
|
|
};
|
|
|
|
class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ShrinkRNNMemoryOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "(LoDTensor) The RNN step memory to be shrinked.");
|
|
AddInput("RankTable", "(LoDRankTable) The lod_rank_table of dynamic RNN.");
|
|
AddInput("I",
|
|
"(LoDTensor) The step index. The RNN step memory 'X' will be "
|
|
"shrinked to match the size of the input of the index'th step.");
|
|
AddOutput("Out", "(LoDTensor) The shrinked RNN step memory.");
|
|
AddComment(R"DOC(
|
|
This operator is used to shrink output batch of memory defined in dynamic RNN.
|
|
|
|
Dynamic RNN is able to handle variable-length sequences, in which, sequences in
|
|
a mini-batch are sorted by their lengths first. After that, the longest sequence
|
|
becomes the first one in the sorted batch, followed by the second longest, the
|
|
third longest, and so on. Dynamic RNN then slices a batch input timestep by
|
|
timestep from the sorted input. Once any sequence in the input batch reaches its
|
|
end, memory defined in dynamicRNN has to shrink its outputs to adapt to the input
|
|
batch size for the next time step.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ShrinkRNNMemoryInferShape : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *context) const override {
|
|
PADDLE_ENFORCE(context->HasInput("X"));
|
|
PADDLE_ENFORCE(context->HasInput("I"));
|
|
PADDLE_ENFORCE(context->HasInput("RankTable"));
|
|
context->SetOutputDim("Out", context->GetInputDim("X"));
|
|
}
|
|
};
|
|
|
|
class ShrinkRNNMemoryGradOp : public ArrayOp {
|
|
public:
|
|
ShrinkRNNMemoryGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: ArrayOp(type, inputs, outputs, attrs) {}
|
|
|
|
void Run(const framework::Scope &scope,
|
|
const platform::Place &place) const override {
|
|
auto *dout_var = scope.FindVar(Input(framework::GradVarName("Out")));
|
|
auto *dx_var = scope.FindVar(Output(framework::GradVarName("X")));
|
|
PADDLE_ENFORCE(dx_var != nullptr, "Input Gradient should not be nullptr");
|
|
auto *x_var = scope.FindVar(Input("X"));
|
|
PADDLE_ENFORCE(x_var != nullptr);
|
|
|
|
auto &x_tensor = x_var->Get<framework::LoDTensor>();
|
|
auto &dx_tensor = *dx_var->GetMutable<framework::LoDTensor>();
|
|
dx_tensor.Resize(x_tensor.dims());
|
|
dx_tensor.mutable_data(x_tensor.place(), x_tensor.type());
|
|
|
|
// get device context from pool
|
|
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
|
|
auto &dev_ctx = *pool.Get(place);
|
|
|
|
if (dout_var == nullptr) { // dx_tensor fill zero
|
|
math::set_constant(dev_ctx, &dx_tensor, 0.0f);
|
|
} else {
|
|
auto &dout_tensor = dout_var->Get<framework::LoDTensor>();
|
|
auto height = dout_tensor.dims()[0];
|
|
auto slice = dx_tensor.Slice(0, static_cast<int>(height));
|
|
framework::Copy(dout_tensor, dout_tensor.place(), dev_ctx, &slice);
|
|
if (dx_tensor.dims()[0] > height) {
|
|
auto rest_tensor = dx_tensor.Slice(
|
|
static_cast<int>(height), static_cast<int>(dx_tensor.dims()[0]));
|
|
math::set_constant(dev_ctx, &rest_tensor, 0.0f);
|
|
}
|
|
}
|
|
dx_tensor.set_lod(x_tensor.lod());
|
|
}
|
|
};
|
|
|
|
class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *context) const override {
|
|
PADDLE_ENFORCE(context->HasInput("X"));
|
|
PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X")));
|
|
context->SetOutputDim(framework::GradVarName("X"),
|
|
context->GetInputDim("X"));
|
|
context->ShareLoD("X", framework::GradVarName("X"));
|
|
}
|
|
};
|
|
|
|
class ShrinkRNNGradOpMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto *op = new framework::OpDesc();
|
|
op->SetType("shrink_rnn_memory_grad");
|
|
op->SetInput("X", Input("X"));
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
op->SetAttrMap(Attrs());
|
|
return std::unique_ptr<framework::OpDesc>(op);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(shrink_rnn_memory, ops::ShrinkRNNMemoryOp,
|
|
ops::ShrinkRNNMemoryInferShape,
|
|
ops::ShrinkRNNMemoryOpProtoMaker, ops::ShrinkRNNGradOpMaker);
|
|
REGISTER_OPERATOR(shrink_rnn_memory_grad, ops::ShrinkRNNMemoryGradOp,
|
|
ops::ShrinkRNNMemoryGradInferShape);
|