You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
4.5 KiB
136 lines
4.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/split_op.h"
|
|
#include "paddle/operators/net_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using framework::Tensor;
|
|
|
|
class SplitOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SplitOp should not be null.");
|
|
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
|
|
"Outputs(Out) of SplitOp should not be empty.");
|
|
auto in_dims = ctx->GetInputDim("X");
|
|
auto outs_names = ctx->Outputs("Out");
|
|
size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
|
|
size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
|
|
std::vector<int> sections = static_cast<std::vector<int>>(
|
|
ctx->Attrs().Get<std::vector<int>>("sections"));
|
|
const size_t outs_number = outs_names.size();
|
|
std::vector<framework::DDim> outs_dims;
|
|
outs_dims.reserve(outs_number);
|
|
|
|
if (num > 0) {
|
|
int64_t in_axis_dim = in_dims[axis];
|
|
PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
|
|
"tensor split does not result"
|
|
" in an equal division");
|
|
size_t out_axis_dim = in_axis_dim / num;
|
|
for (size_t i = 0; i < outs_number; ++i) {
|
|
auto dim = in_dims;
|
|
dim[axis] = out_axis_dim;
|
|
outs_dims.push_back(dim);
|
|
}
|
|
} else if (sections.size() > 0) {
|
|
PADDLE_ENFORCE_EQ(sections.size(), outs_number,
|
|
"tensor split sections size"
|
|
"should be equal to output size.");
|
|
for (size_t i = 0; i < outs_number; ++i) {
|
|
auto dim = in_dims;
|
|
dim[axis] = sections[i];
|
|
outs_dims.push_back(dim);
|
|
}
|
|
}
|
|
ctx->SetOutputsDim("Out", outs_dims);
|
|
if (axis != 0) {
|
|
// Only pass LoD when not spliting along the first dim.
|
|
for (size_t i = 0; i < outs_number; ++i) {
|
|
ctx->ShareLoD("X", "Out", 0, i);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SplitOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "(Tensor) Input tensor of the split operator.");
|
|
AddOutput("Out", "(Tensor) Output tensors of the split operator.")
|
|
.AsDuplicable();
|
|
AddComment(R"DOC(
|
|
Split operator
|
|
|
|
This operator splits the input tensor into multiple sub-tensors.
|
|
|
|
Example:
|
|
Input = [[1,2],
|
|
[3,4],
|
|
[5,6]]
|
|
sections = [2,1]
|
|
axis = 0
|
|
Output[0] = [[1,2],
|
|
[3,4]]
|
|
Output[1] = [[5,6]]
|
|
|
|
)DOC");
|
|
AddAttr<std::vector<int>>("sections",
|
|
"(vector<int>) "
|
|
"the length of each output along the "
|
|
"specified axis.")
|
|
.SetDefault(std::vector<int>{});
|
|
AddAttr<int>("num",
|
|
"(int, default 0)"
|
|
"Number of sub-tensors. This must evenly divide "
|
|
"Input.dims()[axis]")
|
|
.SetDefault(0);
|
|
AddAttr<int>("axis",
|
|
"(int, default 0) "
|
|
"The axis which the input will be splited on.")
|
|
.SetDefault(0);
|
|
}
|
|
};
|
|
|
|
class SplitGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto op = new framework::OpDesc();
|
|
op->SetType("concat");
|
|
op->SetInput("X", OutputGrad("Out"));
|
|
op->SetOutput("Out", InputGrad("X"));
|
|
op->SetAttrMap(Attrs());
|
|
return std::unique_ptr<framework::OpDesc>(op);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
USE_CPU_ONLY_OP(concat);
|
|
|
|
REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker, ops::SplitGradMaker);
|
|
REGISTER_OP_CPU_KERNEL(split,
|
|
ops::SplitOpKernel<paddle::platform::CPUPlace, float>);
|