You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.4 KiB
67 lines
2.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
// Out = sum(square(X))
|
|
template <typename DeviceContext, typename T>
|
|
class SquaredL2NormKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
const framework::Tensor *X = context.Input<framework::Tensor>("X");
|
|
framework::Tensor *Out = context.Output<framework::Tensor>("Out");
|
|
Out->mutable_data<T>(context.GetPlace());
|
|
|
|
auto x = framework::EigenVector<T>::Flatten(*X);
|
|
auto out = framework::EigenScalar<T>::From(*Out);
|
|
auto *place =
|
|
context.template device_context<DeviceContext>().eigen_device();
|
|
|
|
out.device(*place) = x.square().sum();
|
|
}
|
|
};
|
|
|
|
// dX = X
|
|
template <typename DeviceContext, typename T>
|
|
class SquaredL2NormGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
const framework::Tensor *X = context.Input<framework::Tensor>("X");
|
|
const framework::Tensor *dOut =
|
|
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
PADDLE_ENFORCE(dOut->numel() == 1,
|
|
"Squared L2 Norm Gradient should be scalar");
|
|
framework::Tensor *dX =
|
|
context.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
dX->mutable_data<T>(context.GetPlace());
|
|
|
|
auto x = framework::EigenVector<T>::Flatten(*X);
|
|
auto dout = framework::EigenVector<T>::Flatten(*dOut);
|
|
auto dx = framework::EigenVector<T>::Flatten(*dX);
|
|
auto *place =
|
|
context.template device_context<DeviceContext>().eigen_device();
|
|
|
|
Eigen::DSizes<int, 1> x_dsize(X->numel());
|
|
dx.device(*place) = (dout.broadcast(x_dsize) * x) * static_cast<T>(2.0);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|