You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
5.1 KiB
158 lines
5.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "FirstOrderOptimizer.h"
|
|
|
|
namespace paddle {
|
|
|
|
// add regularizer for objective function to do optimization
|
|
class OptimizerWithRegularizer : public ParameterOptimizer {
|
|
public:
|
|
static ParameterOptimizer* create(const OptimizationConfig& optConfig,
|
|
const ParameterConfig& paraConfig,
|
|
bool isParameterSparse,
|
|
bool inPserver);
|
|
|
|
OptimizerWithRegularizer(const OptimizationConfig& optConfig,
|
|
ParameterOptimizer* optimizer,
|
|
Regularizer* regularizer)
|
|
: ParameterOptimizer(optConfig),
|
|
optimizer_(optimizer),
|
|
regularizer_(regularizer) {
|
|
parameterTypes_ = optimizer_->getParameterTypes();
|
|
}
|
|
|
|
virtual void init(size_t numRows, const ParameterConfig* config) {
|
|
optimizer_->init(numRows, config);
|
|
}
|
|
|
|
virtual void startPass() {
|
|
optimizer_->startPass();
|
|
timer_ = 0;
|
|
}
|
|
|
|
virtual void finishPass() { optimizer_->finishPass(); }
|
|
|
|
virtual void startBatch(int64_t numSamplesProcessed) {
|
|
optimizer_->startBatch(numSamplesProcessed);
|
|
}
|
|
|
|
virtual void finishBatch() {
|
|
optimizer_->finishBatch();
|
|
++timer_;
|
|
}
|
|
|
|
virtual TraverseCallback needSpecialTraversal(
|
|
const ParameterConfig& config) const {
|
|
return optimizer_->needSpecialTraversal(config);
|
|
}
|
|
|
|
virtual void update(const VectorPtr vecs[],
|
|
const ParameterConfig& config,
|
|
size_t sparseId) const {
|
|
optimizer_->update(vecs, config, sparseId);
|
|
regularizer_->update(vecs, config, optimizer_->getLearningRate(), 0, 1);
|
|
}
|
|
|
|
protected:
|
|
std::unique_ptr<ParameterOptimizer> optimizer_;
|
|
Regularizer* regularizer_;
|
|
|
|
/**
|
|
* counting batches, clear after catch up with
|
|
* t(timer_) is current time,
|
|
* t0(t0Vec_) are last occur time of i rows.
|
|
* if one block is update by multi threads,
|
|
* caller should hash sparse ids to avoid write conflict in t0Vec_.
|
|
*/
|
|
int timer_;
|
|
};
|
|
|
|
// Regularized Loss function for every num of batches
|
|
class OptimizerWithRegularizerEveryNumBatches
|
|
: public OptimizerWithRegularizer {
|
|
public:
|
|
OptimizerWithRegularizerEveryNumBatches(const OptimizationConfig& optConfig,
|
|
ParameterOptimizer* optimizer,
|
|
Regularizer* regularizer)
|
|
: OptimizerWithRegularizer(optConfig, optimizer, regularizer) {}
|
|
|
|
virtual void startPass() {
|
|
OptimizerWithRegularizer::startPass();
|
|
baseTimer_ = 0;
|
|
}
|
|
|
|
virtual void update(const VectorPtr vecs[],
|
|
const ParameterConfig& config,
|
|
size_t sparseId) const {
|
|
optimizer_->update(vecs, config, sparseId);
|
|
}
|
|
|
|
virtual TraverseCallback needSpecialTraversal(
|
|
const ParameterConfig& config) const;
|
|
void doTraversal(const VectorPtr vecs[], const ParameterConfig& config) const;
|
|
|
|
void catchUpWith(const VectorPtr vecs[],
|
|
const ParameterConfig& config,
|
|
size_t sparseId) const;
|
|
|
|
virtual TraverseCallback startCatchUpWith() const;
|
|
virtual void finishCatchUpWith() { baseTimer_ = timer_; }
|
|
|
|
protected:
|
|
bool isRegularizationBatch(const ParameterConfig& config) const {
|
|
return ((timer_ + 1) % config.num_batches_regularization() == 0);
|
|
}
|
|
|
|
/**
|
|
* recored the timer_ value while catchUpWith called.
|
|
*/
|
|
int baseTimer_;
|
|
};
|
|
|
|
// Regularized Loss function with Sparse support
|
|
class OptimizerWithRegularizerSparse : public OptimizerWithRegularizer {
|
|
public:
|
|
OptimizerWithRegularizerSparse(const OptimizationConfig& optConfig,
|
|
ParameterOptimizer* optimizer,
|
|
Regularizer* regularizer)
|
|
: OptimizerWithRegularizer(optConfig, optimizer, regularizer) {}
|
|
|
|
virtual void init(size_t numRows, const ParameterConfig* config);
|
|
|
|
virtual void update(const VectorPtr vecs[],
|
|
const ParameterConfig& config,
|
|
size_t sparseId) const;
|
|
void catchUpWith(const VectorPtr vecs[],
|
|
const ParameterConfig& config,
|
|
size_t sparseId) const;
|
|
virtual TraverseCallback startCatchUpWith() const;
|
|
virtual void finishCatchUpWith() {
|
|
timer_ = 0;
|
|
t0Vec_.assign(t0Vec_.size(), 0);
|
|
}
|
|
|
|
protected:
|
|
/**
|
|
* t0Vec_ are last occur time of i rows
|
|
* if one block is update by multi threads,
|
|
* caller should hash sparse ids to avoid write conflict in t0Vec_.
|
|
*/
|
|
mutable std::vector<int32_t> t0Vec_;
|
|
};
|
|
|
|
} // namespace paddle
|