You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
6.1 KiB
187 lines
6.1 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MKLDNNConcatLayer.h"
|
|
|
|
using namespace mkldnn; // NOLINT
|
|
typedef memory::format format;
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mkldnn_concat, MKLDNNConcatLayer);
|
|
|
|
bool MKLDNNConcatLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
|
|
return false;
|
|
}
|
|
CHECK_GT(inputLayers_.size(), 1UL);
|
|
CHECK(!biasParameter_);
|
|
return true;
|
|
}
|
|
|
|
void MKLDNNConcatLayer::reshape(
|
|
int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
|
|
reshapeInput(bs, ih, iw);
|
|
ic = inputLayers_[0]->getSize() / ih / iw;
|
|
CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize());
|
|
CHECK_EQ(inputLayers_[0]->getOutputValue()->getElementCnt(),
|
|
(size_t)bs * ic * ih * iw);
|
|
CHECK_GT(inputLayers_.size(), 1UL);
|
|
channels_.resize(inputLayers_.size());
|
|
channels_[0] = ic;
|
|
oc = ic;
|
|
for (size_t i = 1; i < inputLayers_.size(); i++) {
|
|
int batchsize = 0, height = 0, witdh = 0;
|
|
reshapeInput(batchsize, height, witdh, i);
|
|
CHECK_EQ(bs, batchsize);
|
|
CHECK_EQ(ih, height);
|
|
CHECK_EQ(iw, witdh);
|
|
|
|
channels_[i] = inputLayers_[i]->getSize() / height / witdh;
|
|
CHECK_EQ((size_t)channels_[i] * height * witdh, inputLayers_[i]->getSize());
|
|
oc += channels_[i];
|
|
}
|
|
oh = ih;
|
|
ow = iw;
|
|
reshapeOutput(oh, ow);
|
|
resizeOutput(bs, oc * oh * ow);
|
|
}
|
|
|
|
void MKLDNNConcatLayer::resetFwd(std::vector<primitive>& pipeline,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetFwdBuffers(inputs, out);
|
|
|
|
std::shared_ptr<concat::primitive_desc> fwdPD;
|
|
resetFwdPD(fwdPD, inputs, out);
|
|
|
|
resetFwdPipeline(pipeline, fwdPD, inputs, out);
|
|
}
|
|
|
|
void MKLDNNConcatLayer::resetBwd(std::vector<primitive>& pipeline,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetBwdBuffers(inputs, out);
|
|
|
|
resetBwdPipeline(pipeline, bwds_, inputs, out);
|
|
}
|
|
|
|
void MKLDNNConcatLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
inputs.resize(inputLayers_.size());
|
|
bool has8c = false, has16c = false, hasnc = false;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
resetInValue(inputs[i], nullptr, i, channels_[i]);
|
|
inputs[i]->downSpatial();
|
|
CHECK(inputs[i]);
|
|
auto dm = inputs[i]->getDims();
|
|
// inputs format can be different, but ndims must equal
|
|
CHECK(i == 0 || dm.size() == inputs[0]->getDims().size());
|
|
CHECK_EQ(bs_, dm[0]);
|
|
CHECK_EQ(channels_[i], dm[1]);
|
|
if (dm.size() > 2) {
|
|
CHECK_EQ(ih_, dm[2]);
|
|
CHECK_EQ(iw_, dm[3]);
|
|
}
|
|
if (inputs[i]->getFormat() == format::nc) {
|
|
hasnc = true;
|
|
}
|
|
if (inputs[i]->getFormat() == format::nChw8c) {
|
|
has8c = true;
|
|
}
|
|
if (inputs[i]->getFormat() == format::nChw16c) {
|
|
has16c = true;
|
|
}
|
|
}
|
|
|
|
format outFmt;
|
|
if (has16c && oc_ % 16 == 0) {
|
|
outFmt = format::nChw16c;
|
|
} else if (has8c && oc_ % 8 == 0) {
|
|
outFmt = format::nChw8c;
|
|
} else if (hasnc) {
|
|
CHECK(oh_ == 1 && ow_ == 1);
|
|
outFmt = format::nc;
|
|
} else {
|
|
outFmt = format::nchw;
|
|
}
|
|
memory::dims outDims =
|
|
hasnc ? memory::dims{bs_, oc_} : memory::dims{bs_, oc_, oh_, ow_};
|
|
auto outPD = MKLDNNMatrix::createPrimitiveDesc(outDims, outFmt, engine_);
|
|
resetOutValue(out, outPD);
|
|
}
|
|
|
|
void MKLDNNConcatLayer::resetFwdPD(std::shared_ptr<concat::primitive_desc>& pd,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr out) {
|
|
std::vector<memory::primitive_desc> srcPDs;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
srcPDs.push_back(inputs[i]->getPrimitiveDesc());
|
|
}
|
|
CHECK(out);
|
|
pd.reset(new concat::primitive_desc(out->getMemoryDesc(), axis_, srcPDs));
|
|
CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
|
|
}
|
|
|
|
void MKLDNNConcatLayer::resetFwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<concat::primitive_desc>& pd,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
std::vector<primitive::at> srcs;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
srcs.push_back(*(inputs[i]));
|
|
}
|
|
fwd_.reset(new concat(*pd, srcs, *out));
|
|
pipeline.push_back(*fwd_);
|
|
}
|
|
|
|
void MKLDNNConcatLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
CHECK(outVal_);
|
|
resetOutGrad(out, outVal_->getPrimitiveDesc());
|
|
CHECK(out);
|
|
|
|
inputs.resize(inputLayers_.size());
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
CHECK(inVals_[i]);
|
|
resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i);
|
|
CHECK_PRIMITIVE_DESC_EQ(inputs[i], inVals_[i]->getPrimitiveDesc());
|
|
}
|
|
}
|
|
|
|
void MKLDNNConcatLayer::resetBwdPipeline(
|
|
std::vector<mkldnn::primitive>& pipeline,
|
|
std::vector<std::shared_ptr<mkldnn::primitive>>& prims,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
// reset the backward primitives
|
|
memory::dims offsets = {0, 0, 0, 0};
|
|
prims.resize(inputs.size());
|
|
CHECK_EQ(inputs.size(), channels_.size());
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
auto viewPD = view::primitive_desc(
|
|
out->getPrimitiveDesc(), inputs[i]->getDims(), offsets);
|
|
auto bwdPD = reorder::primitive_desc(viewPD.dst_primitive_desc(),
|
|
inputs[i]->getPrimitiveDesc());
|
|
prims[i].reset(new reorder(bwdPD, *out, *(inputs[i])));
|
|
offsets[axis_] += channels_[i];
|
|
// push to pipeline
|
|
pipeline.push_back(*prims[i]);
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|