You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
5.2 KiB
164 lines
5.2 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MKLDNNLRNLayer.h"
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
using namespace mkldnn; // NOLINT
|
|
typedef memory::format format;
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mkldnn_lrn, MKLDNNLRNLayer);
|
|
|
|
bool MKLDNNLRNLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
|
|
return false;
|
|
}
|
|
|
|
/* the size of inputs for norm-layer is 1 */
|
|
CHECK_EQ(config_.inputs_size(), 1);
|
|
const NormConfig& conf = config_.inputs(0).norm_conf();
|
|
localSize_ = conf.size();
|
|
alpha_ = conf.scale();
|
|
beta_ = conf.pow();
|
|
|
|
ic_ = conf.channels();
|
|
oc_ = ic_;
|
|
iw_ = conf.img_size();
|
|
ow_ = conf.output_x();
|
|
ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
|
|
oh_ = conf.has_output_y() ? conf.output_y() : conf.output_x();
|
|
CHECK_EQ(iw_, ow_);
|
|
CHECK_EQ(ih_, oh_);
|
|
return true;
|
|
}
|
|
|
|
void MKLDNNLRNLayer::reshape(
|
|
int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
|
|
CHECK_EQ(inputLayers_.size(), 1UL);
|
|
reshapeInput(bs, ih, iw);
|
|
// ic_ and oc can not be changed
|
|
CHECK_EQ((size_t)ic,
|
|
inputLayers_[0]->getOutputValue()->getElementCnt() / bs / ih / iw)
|
|
<< "Input channel can not be changed";
|
|
oh = ih;
|
|
ow = iw;
|
|
reshapeOutput(oh, ow);
|
|
resizeOutput(bs, oc * oh * ow);
|
|
}
|
|
|
|
void MKLDNNLRNLayer::resetFwd(std::vector<primitive>& pipeline,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetFwdBuffers(inputs[0], out);
|
|
|
|
resetFwdPD(fwdPD_, inputs[0], out);
|
|
|
|
resetFwdPipeline(pipeline, fwdPD_, inputs[0], out);
|
|
}
|
|
|
|
void MKLDNNLRNLayer::resetBwd(std::vector<primitive>& pipeline,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
std::shared_ptr<lrn_bwd::primitive_desc> pd;
|
|
|
|
resetBwdBuffers(inputs[0], out);
|
|
|
|
resetBwdPD(pd, inputs[0], out);
|
|
|
|
resetBwdPipeline(pipeline, pd, inputs[0], out);
|
|
}
|
|
|
|
void MKLDNNLRNLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetInValue(in);
|
|
CHECK(in);
|
|
resetOutValue(out, in->getPrimitiveDesc());
|
|
}
|
|
|
|
void MKLDNNLRNLayer::resetFwdPD(std::shared_ptr<lrn_fwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr in,
|
|
MKLDNNMatrixPtr out) {
|
|
prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
|
|
: prop_kind::forward_training;
|
|
auto fwdDesc = lrn_fwd::desc(pk,
|
|
algorithm::lrn_across_channels,
|
|
in->getMemoryDesc(),
|
|
localSize_,
|
|
alpha_,
|
|
beta_,
|
|
1.0f);
|
|
pd.reset(new lrn_fwd::primitive_desc(fwdDesc, engine_));
|
|
// prepare workspace if necessary
|
|
workspace_ =
|
|
passType_ != PASS_TEST
|
|
? std::make_shared<memory>(memory(pd->workspace_primitive_desc()))
|
|
: nullptr;
|
|
}
|
|
|
|
void MKLDNNLRNLayer::resetFwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<lrn_fwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
fwd_ = workspace_
|
|
? std::make_shared<lrn_fwd>(lrn_fwd(*pd, *in, *workspace_, *out))
|
|
: std::make_shared<lrn_fwd>(lrn_fwd(*pd, *in, *out));
|
|
pipeline.push_back(*fwd_);
|
|
}
|
|
|
|
void MKLDNNLRNLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
CHECK(inVals_[0] && outVal_);
|
|
resetOutGrad(out, outVal_->getPrimitiveDesc());
|
|
resetInGrad(in, inVals_[0]->getPrimitiveDesc());
|
|
}
|
|
|
|
void MKLDNNLRNLayer::resetBwdPD(std::shared_ptr<lrn_bwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
pd = nullptr;
|
|
if (in == nullptr) {
|
|
return;
|
|
}
|
|
CHECK(out);
|
|
auto bwdDesc = lrn_bwd::desc(algorithm::lrn_across_channels,
|
|
in->getMemoryDesc(),
|
|
out->getMemoryDesc(),
|
|
localSize_,
|
|
alpha_,
|
|
beta_,
|
|
1.0f);
|
|
pd.reset(new lrn_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
|
|
}
|
|
|
|
void MKLDNNLRNLayer::resetBwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<lrn_bwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
if (pd == nullptr) {
|
|
return;
|
|
}
|
|
CHECK(inVals_[0]);
|
|
CHECK(workspace_);
|
|
bwdData_ = std::make_shared<lrn_bwd>(
|
|
lrn_bwd(*pd, *inVals_[0], *out, *workspace_, *in));
|
|
pipeline.push_back(*bwdData_);
|
|
}
|
|
|
|
} // namespace paddle
|