You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
6.6 KiB
227 lines
6.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "Layer.h"
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/math/Vector.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
/**
|
|
* A layer for taking the subsequence according to given offset and size
|
|
* Input: original sequence, offset, size
|
|
* Output: subsequence
|
|
*/
|
|
|
|
class SubSequenceLayer : public Layer {
|
|
protected:
|
|
std::unique_ptr<Weight> biases_;
|
|
MatrixPtr tmpSrc_;
|
|
MatrixPtr tmpDest_;
|
|
|
|
public:
|
|
explicit SubSequenceLayer(const LayerConfig& config) : Layer(config) {}
|
|
|
|
bool init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) override;
|
|
|
|
void forward(PassType passType) override;
|
|
void backward(const UpdateCallback& callback = nullptr) override;
|
|
};
|
|
|
|
REGISTER_LAYER(subseq, SubSequenceLayer);
|
|
|
|
bool SubSequenceLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
// sequene concatenation layer should have exactly 2 inputs
|
|
CHECK_EQ(3U, inputLayers_.size());
|
|
|
|
/* initialize biases_ */
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
|
|
}
|
|
|
|
tmpSrc_ =
|
|
Matrix::create(nullptr, /* height= */ 1, 1, /* trans= */ false, useGpu_);
|
|
tmpDest_ =
|
|
Matrix::create(nullptr, /* height= */ 1, 1, /* trans= */ false, useGpu_);
|
|
|
|
setNeedSequenceInfo(false);
|
|
return true;
|
|
}
|
|
|
|
void SubSequenceLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
size_t dim = getSize();
|
|
|
|
const Argument& input = getInput(0);
|
|
size_t numSequences1 = input.getNumSequences();
|
|
auto startPositions1 = input.sequenceStartPositions->getVector(false);
|
|
|
|
const Argument& offsetSeq = getInput(1);
|
|
size_t numSequences2 = offsetSeq.getNumSequences();
|
|
auto startPositions2 = offsetSeq.sequenceStartPositions->getVector(false);
|
|
|
|
const Argument& sizeSeq = getInput(2);
|
|
size_t numSequences3 = sizeSeq.getNumSequences();
|
|
auto startPositions3 = sizeSeq.sequenceStartPositions->getVector(false);
|
|
|
|
CHECK_EQ(dim, input.value->getWidth());
|
|
|
|
CHECK_EQ(startPositions1->getData()[numSequences1], input.getBatchSize());
|
|
CHECK_EQ(numSequences1, startPositions1->getSize() - 1);
|
|
|
|
CHECK_EQ(startPositions2->getData()[numSequences2], offsetSeq.getBatchSize());
|
|
CHECK_EQ(numSequences2, startPositions2->getSize() - 1);
|
|
|
|
CHECK_EQ(startPositions3->getData()[numSequences3], sizeSeq.getBatchSize());
|
|
CHECK_EQ(numSequences3, startPositions3->getSize() - 1);
|
|
|
|
CHECK_EQ(numSequences1, numSequences2);
|
|
CHECK_EQ(numSequences2, numSequences3);
|
|
|
|
MatrixPtr inputValue = input.value;
|
|
IVectorPtr offsetValue;
|
|
IVectorPtr sizeValue;
|
|
|
|
if (useGpu_) {
|
|
// copy to cpu
|
|
IVector::resizeOrCreate(offsetValue, offsetSeq.ids->getSize(), false);
|
|
IVector::resizeOrCreate(sizeValue, sizeSeq.ids->getSize(), false);
|
|
offsetValue->copyFrom(*offsetSeq.ids);
|
|
sizeValue->copyFrom(*sizeSeq.ids);
|
|
} else {
|
|
offsetValue = offsetSeq.ids;
|
|
sizeValue = sizeSeq.ids;
|
|
}
|
|
|
|
CHECK_EQ(offsetValue->getSize(), numSequences1);
|
|
CHECK_EQ(sizeValue->getSize(), numSequences1);
|
|
|
|
int* offsets = offsetValue->getData();
|
|
int* sizes = sizeValue->getData();
|
|
|
|
// get total height of output
|
|
size_t height = 0;
|
|
for (size_t seqId = 0; seqId < numSequences1; seqId++) {
|
|
height += sizes[seqId];
|
|
}
|
|
|
|
// reset output
|
|
resetOutput(height, dim);
|
|
|
|
MatrixPtr outputValue = getOutputValue();
|
|
|
|
const int* starts1 = startPositions1->getData();
|
|
|
|
{
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
REGISTER_TIMER_INFO("SubSequenceLayerForward", getName().c_str());
|
|
|
|
size_t offsetIn = 0;
|
|
size_t offsetOut = 0;
|
|
size_t size = 0;
|
|
for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
|
|
offsetIn = starts1[seqId] + offsets[seqId];
|
|
size = sizes[seqId];
|
|
|
|
outputValue->subMatrix(offsetOut, size, tmpDest_)
|
|
->assign(*(inputValue->subMatrix(offsetIn, size, tmpSrc_)));
|
|
|
|
offsetOut += size;
|
|
}
|
|
|
|
// modify the sequenceStartPositions
|
|
ICpuGpuVector::resizeOrCreate(
|
|
output_.sequenceStartPositions, numSequences1 + 1, false);
|
|
|
|
int* tgtBuf = output_.sequenceStartPositions->getMutableData(false);
|
|
int offset = 0;
|
|
for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
|
|
tgtBuf[seqId] = offset;
|
|
offset += sizes[seqId];
|
|
}
|
|
tgtBuf[numSequences1] = offset;
|
|
}
|
|
|
|
if (biases_.get() != NULL) {
|
|
MatrixPtr outV = getOutputValue();
|
|
outV->addBias(*(biases_->getW()), 1);
|
|
}
|
|
|
|
/* activation */
|
|
forwardActivation();
|
|
}
|
|
|
|
void SubSequenceLayer::backward(const UpdateCallback& callback) {
|
|
/* activation */
|
|
backwardActivation();
|
|
|
|
if (biases_ && biases_->getWGrad()) {
|
|
biases_->getWGrad()->collectBias(*getOutputGrad(), 1);
|
|
|
|
// Increasing the number of gradient
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
|
|
MatrixPtr inputGrad1 = getInputGrad(0);
|
|
MatrixPtr outputGrad = getOutputGrad();
|
|
auto startPositions1 = getInput(0).sequenceStartPositions->getVector(false);
|
|
size_t numSequences1 = startPositions1->getSize() - 1;
|
|
const int* starts1 = startPositions1->getData();
|
|
|
|
const Argument& offsetSeq = getInput(1);
|
|
const Argument& sizeSeq = getInput(2);
|
|
IVectorPtr offsetValue;
|
|
IVectorPtr sizeValue;
|
|
|
|
if (useGpu_) {
|
|
// copy to cpu
|
|
IVector::resizeOrCreate(offsetValue, offsetSeq.ids->getSize(), false);
|
|
IVector::resizeOrCreate(sizeValue, sizeSeq.ids->getSize(), false);
|
|
offsetValue->copyFrom(*offsetSeq.ids);
|
|
sizeValue->copyFrom(*sizeSeq.ids);
|
|
} else {
|
|
offsetValue = offsetSeq.ids;
|
|
sizeValue = sizeSeq.ids;
|
|
}
|
|
|
|
int* offsets = offsetValue->getData();
|
|
int* sizes = sizeValue->getData();
|
|
{
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
REGISTER_TIMER_INFO("SubSequenceLayerBackward", getName().c_str());
|
|
|
|
int offsetIn = 0;
|
|
int offsetOut = 0;
|
|
int size = 0;
|
|
for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
|
|
offsetIn = starts1[seqId] + offsets[seqId];
|
|
size = sizes[seqId];
|
|
|
|
inputGrad1->subMatrix(offsetIn, size, tmpDest_)
|
|
->add(*(outputGrad->subMatrix(offsetOut, size, tmpSrc_)));
|
|
offsetOut += size;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|