You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/trainer_config_helpers/tests/configs/shared_lstm.py

42 lines
1.2 KiB

from paddle.trainer_config_helpers import *
settings(learning_rate=1e-4, batch_size=1000)
data_1 = data_layer(name='data_a', size=100)
data_2 = data_layer(name='data_b', size=100)
mixed_param = ParamAttr(name='mixed_param')
with mixed_layer(size=400, bias_attr=False) as m1:
m1 += full_matrix_projection(input=data_1, param_attr=mixed_param)
with mixed_layer(size=400, bias_attr=False) as m2:
m2 += full_matrix_projection(input=data_2, param_attr=mixed_param)
lstm_param = ParamAttr(name='lstm_param')
lstm_bias = ParamAttr(name='lstm_bias', initial_mean=0., initial_std=0.)
lstm1 = lstmemory_group(
input=m1,
param_attr=lstm_param,
lstm_bias_attr=lstm_bias,
mixed_bias_attr=False)
lstm2 = lstmemory_group(
input=m2,
param_attr=lstm_param,
lstm_bias_attr=lstm_bias,
mixed_bias_attr=False)
softmax_param = ParamAttr(name='softmax_param')
predict = fc_layer(
input=[last_seq(input=lstm1), last_seq(input=lstm2)],
size=10,
param_attr=[softmax_param, softmax_param],
bias_attr=False,
act=SoftmaxActivation())
outputs(
classification_cost(
input=predict, label=data_layer(
name='label', size=10)))