You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
6.0 KiB
210 lines
6.0 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import division
|
|
|
|
import unittest
|
|
|
|
import paddle.fluid as fluid
|
|
from paddle.io import BatchSampler, Dataset, Sampler, SequenceSampler, RandomSampler
|
|
from paddle.io import DistributedBatchSampler
|
|
|
|
|
|
class RandomDataset(Dataset):
|
|
def __init__(self, sample_num, class_num):
|
|
self.sample_num = sample_num
|
|
self.class_num = class_num
|
|
|
|
def __getitem__(self, idx):
|
|
np.random.seed(idx)
|
|
image = np.random.random([IMAGE_SIZE]).astype('float32')
|
|
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
|
|
return image, label
|
|
|
|
def __len__(self):
|
|
return self.sample_num
|
|
|
|
|
|
class TestSampler(unittest.TestCase):
|
|
def test_main(self):
|
|
dataset = RandomDataset(100, 10)
|
|
sampler = Sampler(dataset)
|
|
try:
|
|
iter(sampler)
|
|
self.assertTrue(False)
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
|
|
class TestSequenceSampler(unittest.TestCase):
|
|
def test_main(self):
|
|
dataset = RandomDataset(100, 10)
|
|
sampler = SequenceSampler(dataset)
|
|
assert len(sampler) == 100
|
|
|
|
for i, index in enumerate(iter(sampler)):
|
|
assert i == index
|
|
|
|
|
|
class TestRandomSampler(unittest.TestCase):
|
|
def test_main(self):
|
|
dataset = RandomDataset(100, 10)
|
|
sampler = RandomSampler(dataset)
|
|
assert len(sampler) == 100
|
|
|
|
rets = []
|
|
for i in iter(sampler):
|
|
rets.append(i)
|
|
assert tuple(sorted(rets)) == tuple(range(0, 100))
|
|
|
|
def test_with_num_samples(self):
|
|
dataset = RandomDataset(100, 10)
|
|
sampler = RandomSampler(dataset, num_samples=50, replacement=True)
|
|
assert len(sampler) == 50
|
|
|
|
rets = []
|
|
for i in iter(sampler):
|
|
rets.append(i)
|
|
assert i >= 0 and i < 100
|
|
|
|
def test_with_generator(self):
|
|
dataset = RandomDataset(100, 10)
|
|
generator = iter(range(0, 60))
|
|
sampler = RandomSampler(dataset, generator=generator)
|
|
assert len(sampler) == 100
|
|
|
|
rets = []
|
|
for i in iter(sampler):
|
|
rets.append(i)
|
|
assert tuple(sorted(rets)) == tuple(range(0, 60))
|
|
|
|
def test_with_generator_num_samples(self):
|
|
dataset = RandomDataset(100, 10)
|
|
generator = iter(range(0, 60))
|
|
sampler = RandomSampler(
|
|
dataset, generator=generator, num_samples=50, replacement=True)
|
|
assert len(sampler) == 50
|
|
|
|
rets = []
|
|
for i in iter(sampler):
|
|
rets.append(i)
|
|
assert tuple(sorted(rets)) == tuple(range(0, 50))
|
|
|
|
|
|
class TestBatchSampler(unittest.TestCase):
|
|
def setUp(self):
|
|
self.num_samples = 1000
|
|
self.num_classes = 10
|
|
self.batch_size = 32
|
|
self.shuffle = False
|
|
self.drop_last = False
|
|
|
|
def init_batch_sampler(self):
|
|
dataset = RandomDataset(self.num_samples, self.num_classes)
|
|
bs = BatchSampler(
|
|
dataset=dataset,
|
|
batch_size=self.batch_size,
|
|
shuffle=self.shuffle,
|
|
drop_last=self.drop_last)
|
|
return bs
|
|
|
|
def test_main(self):
|
|
bs = self.init_batch_sampler()
|
|
# length check
|
|
bs_len = (self.num_samples + int(not self.drop_last) \
|
|
* (self.batch_size - 1)) // self.batch_size
|
|
self.assertTrue(bs_len == len(bs))
|
|
|
|
# output indices check
|
|
if not self.shuffle:
|
|
index = 0
|
|
for indices in bs:
|
|
for idx in indices:
|
|
self.assertTrue(index == idx)
|
|
index += 1
|
|
|
|
|
|
class TestBatchSamplerDropLast(TestBatchSampler):
|
|
def setUp(self):
|
|
self.num_samples = 1000
|
|
self.num_classes = 10
|
|
self.batch_size = 32
|
|
self.shuffle = False
|
|
self.drop_last = True
|
|
|
|
|
|
class TestBatchSamplerShuffle(TestBatchSampler):
|
|
def setUp(self):
|
|
self.num_samples = 1000
|
|
self.num_classes = 10
|
|
self.batch_size = 32
|
|
self.shuffle = True
|
|
self.drop_last = True
|
|
|
|
|
|
class TestBatchSamplerWithSampler(TestBatchSampler):
|
|
def init_batch_sampler(self):
|
|
dataset = RandomDataset(1000, 10)
|
|
sampler = SequenceSampler(dataset)
|
|
bs = BatchSampler(
|
|
sampler=sampler,
|
|
batch_size=self.batch_size,
|
|
drop_last=self.drop_last)
|
|
return bs
|
|
|
|
|
|
class TestBatchSamplerWithSamplerDropLast(unittest.TestCase):
|
|
def setUp(self):
|
|
self.num_samples = 1000
|
|
self.num_classes = 10
|
|
self.batch_size = 32
|
|
self.shuffle = False
|
|
self.drop_last = True
|
|
|
|
|
|
class TestBatchSamplerWithSamplerShuffle(unittest.TestCase):
|
|
def setUp(self):
|
|
self.num_samples = 1000
|
|
self.num_classes = 10
|
|
self.batch_size = 32
|
|
self.shuffle = True
|
|
self.drop_last = True
|
|
|
|
def test_main(self):
|
|
try:
|
|
dataset = RandomDataset(self.num_samples, self.num_classes)
|
|
sampler = RandomSampler(dataset)
|
|
bs = BatchSampler(
|
|
sampler=sampler,
|
|
shuffle=self.shuffle,
|
|
batch_size=self.batch_size,
|
|
drop_last=self.drop_last)
|
|
self.assertTrue(False)
|
|
except AssertionError:
|
|
pass
|
|
|
|
|
|
class TestDistributedBatchSamplerWithSampler(TestBatchSampler):
|
|
def init_batch_sampler(self):
|
|
dataset = RandomDataset(1000, 10)
|
|
bs = DistributedBatchSampler(
|
|
dataset=dataset,
|
|
batch_size=self.batch_size,
|
|
drop_last=self.drop_last)
|
|
return bs
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|