You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_batch_sampler.py

210 lines
6.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import unittest
import paddle.fluid as fluid
from paddle.io import BatchSampler, Dataset, Sampler, SequenceSampler, RandomSampler
from paddle.io import DistributedBatchSampler
class RandomDataset(Dataset):
def __init__(self, sample_num, class_num):
self.sample_num = sample_num
self.class_num = class_num
def __getitem__(self, idx):
np.random.seed(idx)
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.sample_num
class TestSampler(unittest.TestCase):
def test_main(self):
dataset = RandomDataset(100, 10)
sampler = Sampler(dataset)
try:
iter(sampler)
self.assertTrue(False)
except NotImplementedError:
pass
class TestSequenceSampler(unittest.TestCase):
def test_main(self):
dataset = RandomDataset(100, 10)
sampler = SequenceSampler(dataset)
assert len(sampler) == 100
for i, index in enumerate(iter(sampler)):
assert i == index
class TestRandomSampler(unittest.TestCase):
def test_main(self):
dataset = RandomDataset(100, 10)
sampler = RandomSampler(dataset)
assert len(sampler) == 100
rets = []
for i in iter(sampler):
rets.append(i)
assert tuple(sorted(rets)) == tuple(range(0, 100))
def test_with_num_samples(self):
dataset = RandomDataset(100, 10)
sampler = RandomSampler(dataset, num_samples=50, replacement=True)
assert len(sampler) == 50
rets = []
for i in iter(sampler):
rets.append(i)
assert i >= 0 and i < 100
def test_with_generator(self):
dataset = RandomDataset(100, 10)
generator = iter(range(0, 60))
sampler = RandomSampler(dataset, generator=generator)
assert len(sampler) == 100
rets = []
for i in iter(sampler):
rets.append(i)
assert tuple(sorted(rets)) == tuple(range(0, 60))
def test_with_generator_num_samples(self):
dataset = RandomDataset(100, 10)
generator = iter(range(0, 60))
sampler = RandomSampler(
dataset, generator=generator, num_samples=50, replacement=True)
assert len(sampler) == 50
rets = []
for i in iter(sampler):
rets.append(i)
assert tuple(sorted(rets)) == tuple(range(0, 50))
class TestBatchSampler(unittest.TestCase):
def setUp(self):
self.num_samples = 1000
self.num_classes = 10
self.batch_size = 32
self.shuffle = False
self.drop_last = False
def init_batch_sampler(self):
dataset = RandomDataset(self.num_samples, self.num_classes)
bs = BatchSampler(
dataset=dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
drop_last=self.drop_last)
return bs
def test_main(self):
bs = self.init_batch_sampler()
# length check
bs_len = (self.num_samples + int(not self.drop_last) \
* (self.batch_size - 1)) // self.batch_size
self.assertTrue(bs_len == len(bs))
# output indices check
if not self.shuffle:
index = 0
for indices in bs:
for idx in indices:
self.assertTrue(index == idx)
index += 1
class TestBatchSamplerDropLast(TestBatchSampler):
def setUp(self):
self.num_samples = 1000
self.num_classes = 10
self.batch_size = 32
self.shuffle = False
self.drop_last = True
class TestBatchSamplerShuffle(TestBatchSampler):
def setUp(self):
self.num_samples = 1000
self.num_classes = 10
self.batch_size = 32
self.shuffle = True
self.drop_last = True
class TestBatchSamplerWithSampler(TestBatchSampler):
def init_batch_sampler(self):
dataset = RandomDataset(1000, 10)
sampler = SequenceSampler(dataset)
bs = BatchSampler(
sampler=sampler,
batch_size=self.batch_size,
drop_last=self.drop_last)
return bs
class TestBatchSamplerWithSamplerDropLast(unittest.TestCase):
def setUp(self):
self.num_samples = 1000
self.num_classes = 10
self.batch_size = 32
self.shuffle = False
self.drop_last = True
class TestBatchSamplerWithSamplerShuffle(unittest.TestCase):
def setUp(self):
self.num_samples = 1000
self.num_classes = 10
self.batch_size = 32
self.shuffle = True
self.drop_last = True
def test_main(self):
try:
dataset = RandomDataset(self.num_samples, self.num_classes)
sampler = RandomSampler(dataset)
bs = BatchSampler(
sampler=sampler,
shuffle=self.shuffle,
batch_size=self.batch_size,
drop_last=self.drop_last)
self.assertTrue(False)
except AssertionError:
pass
class TestDistributedBatchSamplerWithSampler(TestBatchSampler):
def init_batch_sampler(self):
dataset = RandomDataset(1000, 10)
bs = DistributedBatchSampler(
dataset=dataset,
batch_size=self.batch_size,
drop_last=self.drop_last)
return bs
if __name__ == '__main__':
unittest.main()