You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tensor/random.py

676 lines
26 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define random functions
import numpy as np
from ..fluid import core
from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, Variable, convert_np_dtype_to_dtype_
from ..fluid.layers.layer_function_generator import templatedoc
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
from ..fluid.layers import utils
from ..fluid.layers.tensor import fill_constant
import paddle
import warnings
from ..fluid.io import shuffle #DEFINE_ALIAS
__all__ = [
'bernoulli',
'standard_normal',
'normal',
'uniform',
'shuffle',
'randn',
'rand',
'randint',
'randperm',
]
def bernoulli(x, name=None):
"""
This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
The input ``x`` is a tensor with probabilities for generating the random binary number.
Each element in ``x`` should be in [0, 1], and the out is generated by:
.. math::
out_i ~ Bernoulli (x_i)
Args:
x(Tensor): A tensor with probabilities for generating the random binary number. The data type
should be float32, float64.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = paddle.rand([2, 3])
print(x.numpy())
# [[0.11272584 0.3890902 0.7730957 ]
# [0.10351662 0.8510418 0.63806665]]
out = paddle.bernoulli(x)
print(out.numpy())
# [[0. 0. 1.]
# [0. 0. 1.]]
"""
if in_dygraph_mode():
return core.ops.bernoulli(x)
check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")
helper = LayerHelper("randint", **locals())
out = helper.create_variable_for_type_inference(
dtype=x.dtype) # maybe set out to int32 ?
helper.append_op(
type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
return out
def gaussian_random(shape, mean=0.0, std=1.0, dtype='float32', name=None):
"""
This OP returns a Tensor filled with random values sampled from a Gaussian
distribution, with ``shape`` and ``dtype``.
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
mean(float|int, optional): Mean of the output tensor, default is 0.0.
std(float|int, optional): Standard deviation of the output tensor, default
is 1.0.
seed(int, optional): ${seed_comment}
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
the output Tensor. Supported data types: float32, float64.
Default is float32.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random values sampled from a Gaussian
distribution, with ``shape`` and ``dtype``.
"""
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
seed = 0
op_type_for_check = 'gaussian_random/standard_normal/randn/normal'
if in_dygraph_mode():
shape = utils._convert_shape_to_list(shape)
return core.ops.gaussian_random('shape', shape, 'mean',
float(mean), 'std',
float(std), 'seed', seed, 'dtype',
dtype)
check_type(shape, 'shape', (list, tuple, Variable), op_type_for_check)
check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)
inputs = {}
attrs = {
'mean': mean,
'std': std,
'seed': seed,
'dtype': dtype,
'use_mkldnn': False
}
utils._get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)
helper = LayerHelper('gaussian_random', **locals())
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='gaussian_random',
inputs=inputs,
outputs={'Out': out},
attrs=attrs)
out.stop_gradient = True
return out
def standard_normal(shape, dtype=None, name=None):
"""
This OP returns a Tensor filled with random values sampled from a standard
normal distribution with mean 0 and standard deviation 1, with ``shape``
and ``dtype``.
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: float32, float64. If ``dytpe``
is None, the data type is float32. Default is None.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random values sampled from a standard
normal distribution with mean 0 and standard deviation 1, with
``shape`` and ``dtype``.
Raises:
TypeError: If ``shape`` is not list, tuple, Tensor.
TypeError: If ``dtype`` is not float32, float64.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
result_1 = paddle.standard_normal(shape=[2, 3])
# [[-2.923464 , 0.11934398, -0.51249987], # random
# [ 0.39632758, 0.08177969, 0.2692008 ]] # random
# example 2: attr shape is a list which contains Tensor.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.standard_normal(shape=[dim_1, dim_2, 2])
# [[[-2.8852394 , -0.25898588], # random
# [-0.47420555, 0.17683524], # random
# [-0.7989969 , 0.00754541]], # random
# [[ 0.85201347, 0.32320443], # random
# [ 1.1399018 , 0.48336947], # random
# [ 0.8086993 , 0.6868893 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
var_shape = paddle.to_tensor(np.array([2, 3]))
result_3 = paddle.standard_normal(var_shape)
# [[-2.878077 , 0.17099959, 0.05111201] # random
# [-0.3761474, -1.044801 , 1.1870178 ]] # random
"""
if dtype is None:
dtype = 'float32'
return gaussian_random(
shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
randn = standard_normal
def normal(mean=0.0, std=1.0, shape=None, name=None):
"""
This OP returns a Tensor filled with random values sampled from a normal
distribution with ``mean`` and ``std`` (standard deviation) .
If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.
If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.
Args:
mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
If ``mean`` is float, all elements of the output Tensor shared the same mean.
If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
Default is 0.0
std (float|Tensor, optional): The standard deviation of the output Tensor's normal distribution.
If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
Defaule is 1.0
shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
Default is None
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
out1 = paddle.normal(shape=[2, 3])
# [[ 0.17501129 0.32364586 1.561118 ] # random
# [-1.7232178 1.1545963 -0.76156676]] # random
mean_tensor = paddle.to_tensor(np.array([1.0, 2.0, 3.0]))
out2 = paddle.normal(mean=mean_tensor)
# [ 0.18644847 -1.19434458 3.93694787] # random
std_tensor = paddle.to_tensor(np.array([1.0, 2.0, 3.0]))
out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
# [1.00780561 3.78457445 5.81058198] # random
"""
if not in_dygraph_mode():
check_type(mean, 'mean', (int, float, Variable), 'normal')
check_type(std, 'std', (int, float, Variable), 'normal')
if isinstance(mean, Variable):
check_dtype(
mean.dtype, 'mean', ['float32', 'float64'], 'normal',
"If mean is Tensor, it's data type only support float32, float64."
)
if isinstance(std, Variable):
check_dtype(
std.dtype, 'std', ['float32', 'float64'], 'normal',
"If std is Tensor, it's data type only support float32, float64."
)
if shape is not None:
if isinstance(shape, (list, tuple)):
for item in shape:
check_type(item, 'shape', (int), 'normal',
'Elements of shape should be int.')
elif isinstance(shape, Variable):
check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'normal')
else:
assert TypeError(
'If mean and std are all not Tensor, shape should be list, tuple, Tensor.'
)
if isinstance(mean, Variable):
if isinstance(std, Variable):
if std.dtype != mean.dtype:
std = paddle.cast(std, mean.dtype)
mean_shape = paddle.shape(mean)
std = paddle.reshape(std, mean_shape)
else:
std = float(std)
out = standard_normal(paddle.shape(mean), mean.dtype, name)
elif isinstance(std, Variable):
mean = float(mean)
out = standard_normal(paddle.shape(std), std.dtype, name)
else:
return gaussian_random(shape=shape, mean=mean, std=std, name=name)
out = out * std + mean
if not in_dygraph_mode():
out.stop_grediant = True
return out
def uniform(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None):
"""
This OP returns a Tensor filled with random values sampled from a uniform
distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
Examples:
::
Input:
shape = [1, 2]
Output:
result=[[0.8505902, 0.8397286]]
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
dtype(str|np.dtype, optional): The data type of
the output Tensor. Supported data types: float32, float64.
Default is float32.
min(float|int, optional): The lower bound on the range of random values
to generate, ``min`` is included in the range. Default is -1.0.
max(float|int, optional): The upper bound on the range of random values
to generate, ``max`` is excluded in the range. Default is 1.0.
seed(int, optional): Random seed used for generating samples. 0 means
use a seed generated by the system. Note that if seed is not 0,
this operator will always generate the same random numbers every
time. Default is 0.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random values sampled from a uniform
distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
Raises:
TypeError: If ``shape`` is not list, tuple, Tensor.
TypeError: If ``dtype`` is not float32, float64.
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
# example 1:
# attr shape is a list which doesn't contain Tensor.
result_1 = paddle.tensor.random.uniform(shape=[3, 4])
# [[ 0.84524226, 0.6921872, 0.56528175, 0.71690357],
# [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
# [ 0.433519, 0.39483607, -0.8660099, 0.83664286]]
# example 2:
# attr shape is a list which contains Tensor.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_2])
# [[-0.9951253, 0.30757582, 0.9899647 ],
# [ 0.5864527, 0.6607096, -0.8886161 ]]
# example 3:
# attr shape is a Tensor, the data type must be int64 or int32.
shape = np.array([2, 3])
shape_tensor = paddle.to_tensor(shape)
result_3 = paddle.tensor.random.uniform(shape_tensor)
# if shape_tensor's value is [2, 3]
# result_3 is:
# [[-0.8517412, -0.4006908, 0.2551912 ],
# [ 0.3364414, 0.36278176, -0.16085452]]
"""
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
shape = utils._convert_shape_to_list(shape)
return core.ops.uniform_random('shape', shape, 'min',
float(min), 'max',
float(max), 'seed', seed, 'dtype', dtype)
check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random/rand')
inputs = dict()
attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
utils._get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand')
helper = LayerHelper("uniform_random", **locals())
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="uniform_random", inputs=inputs, attrs=attrs,
outputs={"Out": out})
return out
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
"""
:alias_main: paddle.randint
:alias: paddle.tensor.randint, paddle.tensor.random.randint
This OP returns a Tensor filled with random integers from a discrete uniform
distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
If ``high`` is None (the default), the range is [0, ``low``).
Args:
low(int): The lower bound on the range of random values to generate.
The ``low`` is included in the range. If ``high`` is None, the
range is [0, ``low``). Default is 0.
high(int, optional): The upper bound on the range of random values to
generate, the ``high`` is excluded in the range. Default is None
(see above for behavior if high = None). Default is None.
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64). Default is [1].
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: int32, int64. If ``dytpe``
is None, the data type is int64. Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random integers from a discrete uniform
distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
Raises:
TypeError: If ``shape`` is not list, tuple, Tensor.
TypeError: If ``dtype`` is not int32, int64.
ValueError: If ``high`` is not greater then ``low``; If ``high`` is
None, and ``low`` is not greater than 0.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
# example 1:
# attr shape is a list which doesn't contain Tensor.
result_1 = paddle.randint(low=-5, high=5, shape=[3])
# [0, -3, 2] # random
# example 2:
# attr shape is a list which contains Tensor.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")
# [[0, -1, -3], # random
# [4, -2, 0]] # random
# example 3:
# attr shape is a Tensor
var_shape = paddle.to_variable(np.array([3]))
result_3 = paddle.randint(low=-5, high=5, shape=var_shape)
# [-2, 2, 3] # random
# example 4:
# data type is int32
result_4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
# [-5, 4, -4] # random
# example 5:
# Input only one parameter
# low=0, high=10, shape=[1], dtype='int64'
result_5 = paddle.randint(10)
# [7] # random
"""
if high is None:
if low <= 0:
raise ValueError(
"If high is None, low must be greater than 0, but received low = {0}.".
format(low))
high = low
low = 0
if dtype is None:
dtype = 'int64'
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
shape = utils._convert_shape_to_list(shape)
return core.ops.randint('shape', shape, 'low', low, 'high', high,
'seed', 0, 'dtype', dtype)
check_type(shape, 'shape', (list, tuple, Variable), 'randint')
check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
if low >= high:
raise ValueError(
"randint's low must less then high, but received low = {0}, "
"high = {1}".format(low, high))
inputs = dict()
attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
utils._get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type='randint')
helper = LayerHelper("randint", **locals())
out = helper.create_variable_for_type_inference(dtype=dtype)
helper.append_op(
type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
return out
@templatedoc()
def randperm(n, dtype="int64", name=None):
"""
:alias_main: paddle.randperm
:alias: paddle.tensor.randperm, paddle.tensor.random.randperm
This OP returns a 1-D Tensor filled with random permutation values from 0
to n-1, with ``dtype``.
Args:
n(int): The upper bound (exclusive), and it should be greater than 0.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
the output Tensor. Supported data types: int32, int64, float32,
float64. Default is int64.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A 1-D Tensor filled with random permutation values from 0
to n-1, with ``dtype``.
Raises:
ValueError: If ``n`` is not greater than 0.
TypeError: If ``dtype`` is not int32, int64, float32, float64.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
result_1 = paddle.randperm(5)
# [4, 1, 2, 3, 0] # random
result_2 = paddle.randperm(7, 'int32')
# [1, 6, 2, 0, 4, 3, 5] # random
"""
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
if n < 1:
raise ValueError("The input n should be greater than 0 in randperm op.")
check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
'randperm')
helper = LayerHelper("randperm", **locals())
out = helper.create_variable_for_type_inference(dtype)
attrs = {'n': n, 'dtype': dtype, 'seed': 0}
helper.append_op(
type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
out.stop_gradient = True
return out
def rand(shape, dtype=None, name=None):
"""
:alias_main: paddle.rand
:alias: paddle.tensor.rand, paddle.tensor.random.rand
This OP returns a Tensor filled with random values sampled from a uniform
distribution in the range [0, 1), with ``shape`` and ``dtype``.
Examples:
::
Input:
shape = [1, 2]
Output:
result=[[0.8505902, 0.8397286]]
Args:
shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
is a list or tuple, the elements of it should be integers or Tensors
(with the shape [1], and the data type int32 or int64). If ``shape``
is a Tensor, it should be a 1-D Tensor(with the data type int32 or
int64).
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
output tensor. Supported data types: float32, float64. If ``dytpe``
is None, the data type is float32. Default is None.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with random values sampled from a uniform
distribution in the range [0, 1), with ``shape`` and ``dtype``.
Raises:
TypeError: If ``shape`` is not list, tuple, Tensor.
ValueError: If ``dtype`` is not float32, float64.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
result_1 = paddle.rand(shape=[2, 3])
# [[0.451152 , 0.55825245, 0.403311 ], # random
# [0.22550228, 0.22106001, 0.7877319 ]] # random
# example 2: attr shape is a list which contains Tensor.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.rand(shape=[dim_1, dim_2, 2])
# [[[0.8879919 , 0.25788337], # random
# [0.28826773, 0.9712097 ], # random
# [0.26438272, 0.01796806]], # random
# [[0.33633623, 0.28654453], # random
# [0.79109055, 0.7305809 ], # random
# [0.870881 , 0.2984597 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
var_shape = paddle.to_variable(np.array([2, 3]))
result_3 = paddle.rand(var_shape)
# [[0.22920267, 0.841956 , 0.05981819], # random
# [0.4836288 , 0.24573246, 0.7516129 ]] # random
"""
if dtype is None:
dtype = 'float32'
out = uniform(shape, dtype, min=0.0, max=1.0, name=name)
out.stop_gradient = True
return out