You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.7 KiB
77 lines
2.7 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/memory/memcpy.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/operators/math/sequence_padding.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
using LoD = framework::LoD;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequencePadOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
const auto* x = ctx.Input<LoDTensor>("X");
|
|
auto* out = ctx.Output<LoDTensor>("Out");
|
|
auto* len_t = ctx.Output<LoDTensor>("Length");
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
const auto* pad_value = ctx.Input<LoDTensor>("PadValue");
|
|
|
|
int padded_length = ctx.Attr<int>("padded_length");
|
|
|
|
math::PaddingLoDTensorFunctor<DeviceContext, T>()(
|
|
ctx.template device_context<DeviceContext>(), *x, out, *pad_value,
|
|
padded_length, 0, false, math::kBatchLengthWidth);
|
|
|
|
LoDTensor seq_len;
|
|
seq_len.Resize(len_t->dims());
|
|
int64_t* len_data = seq_len.mutable_data<int64_t>(platform::CPUPlace());
|
|
for (size_t i = 1; i < x->lod()[0].size(); ++i) {
|
|
len_data[i - 1] = x->lod()[0][i] - x->lod()[0][i - 1];
|
|
}
|
|
framework::TensorCopy(seq_len, ctx.GetPlace(),
|
|
ctx.template device_context<DeviceContext>(), len_t);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequencePadGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* d_x = ctx.Output<LoDTensor>(framework::GradVarName("X"));
|
|
if (d_x) {
|
|
const auto* d_out = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
|
|
d_x->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int padded_length = ctx.Attr<int>("padded_length");
|
|
|
|
math::UnpaddingLoDTensorFunctor<DeviceContext, T>()(
|
|
ctx.template device_context<DeviceContext>(), *d_out, d_x,
|
|
padded_length, 0, false, math::kBatchLengthWidth);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|