You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/prepared_operator.h

177 lines
6.0 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/imperative/execution_context.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
DECLARE_bool(use_mkldnn);
namespace paddle {
namespace framework {
class Tensor;
class Variable;
} // namespace framework
namespace platform {
class DeviceContext;
} // namespace platform
} // namespace paddle
namespace paddle {
namespace imperative {
const framework::Tensor* GetTensorFromVar(const framework::Variable& var);
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);
template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
const std::shared_ptr<VariableWrapper>& var) {
if (var->HasGradVar()) {
auto grad_var = var->GetGradVar();
VLOG(6) << "Set grad var (" << grad_var->Name() << ") dtype to ("
<< framework::DataTypeToString(var->DataType()) << ").";
grad_var->SetForwardDataType(var->DataType());
}
}
template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
if (var->HasGradVar()) {
auto& shared_var = var->SharedVar();
SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
}
}
#ifdef PADDLE_WITH_XPU
static void ReplaceXPUKernelIfNotExists(
const framework::OperatorWithKernel& op,
framework::OpKernelType* expected_kernel_key) {
auto& all_op_kernels = op.AllOpKernels();
auto kernels_iter = all_op_kernels.find(op.Type());
PADDLE_ENFORCE_NE(
kernels_iter, all_op_kernels.end(),
platform::errors::NotFound(
"There are no kernels which are registered in the %s operator.",
op.Type()));
auto& kernels = kernels_iter->second;
auto kernel_iter = kernels.find(*expected_kernel_key);
if (kernel_iter == kernels.end() &&
is_xpu_place(expected_kernel_key->place_)) {
expected_kernel_key->place_ = platform::CPUPlace();
}
}
#endif
template <typename VarType>
framework::OpKernelType GetExpectedKernelKey(
const NameVarMap<VarType>& ins, const NameVarMap<VarType>& outs,
const framework::OperatorWithKernel& op, const platform::Place& place,
const framework::AttributeMap& attrs) {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = pool.Get(place);
framework::RuntimeContext ctx({}, {});
#ifdef PADDLE_WITH_MKLDNN
// MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
// GetKernelType functions, so we need to copy the attributes there.
// Const qualifier of Attrs had to be discarded to overwrite it.
if (FLAGS_use_mkldnn) {
auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
mutable_op_attrs = attrs;
}
#endif
auto expected_kernel_key =
op.GetExpectedKernelType(DygraphExecutionContext<VarType>(
op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs));
#ifdef PADDLE_WITH_XPU
ReplaceXPUKernelIfNotExists(op, &expected_kernel_key);
#endif
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
return expected_kernel_key;
}
template <typename VarType>
NameVarMap<VarType> PrepareData(
const framework::OperatorWithKernel& op, const NameVarMap<VarType>& ins,
const framework::OpKernelType& expected_kernel_key) {
NameVarMap<VarType> tmp_ins(ins);
for (auto& name_pair : tmp_ins) {
for (auto& var_base : name_pair.second) {
const auto* tensor = GetTensorFromVar(var_base->Var());
SetForwardDataTypeOfGradVar(var_base);
if (tensor && tensor->IsInitialized()) {
auto kernel_type_for_var = op.GetKernelTypeForVar(
name_pair.first, *tensor, expected_kernel_key);
if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
continue;
} else {
VLOG(3) << "Transform Variable " << var_base->Name() << " from "
<< kernel_type_for_var << " to " << expected_kernel_key;
framework::Tensor out;
auto tmp_var = std::make_shared<VarType>(var_base->Name());
tmp_var->SetType(var_base->Type());
TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
&out);
SetTensorToVariable(var_base->Var(), out, tmp_var->MutableVar());
var_base = tmp_var;
}
}
}
}
return tmp_ins;
}
class PreparedOp {
public:
PreparedOp(const framework::OperatorBase& op,
const framework::RuntimeContext& ctx,
const framework::OpKernelType& kernel_type,
const framework::OperatorWithKernel::OpKernelFunc& func,
platform::DeviceContext* dev_ctx);
static PreparedOp Prepare(const framework::OperatorWithKernel& op,
const framework::OpKernelType& expected_kernel_key);
void Run(const NameVarMap<VarBase>& in, const NameVarMap<VarBase>& out,
const framework::AttributeMap& attrs);
void Run(const NameVarMap<VariableWrapper>& ins,
const NameVarMap<VariableWrapper>& outs,
const framework::AttributeMap& attrs);
private:
const framework::OperatorBase& op_;
const framework::RuntimeContext& ctx_;
framework::OpKernelType kernel_type_;
framework::OperatorWithKernel::OpKernelFunc func_;
platform::DeviceContext* dev_ctx_;
};
} // namespace imperative
} // namespace paddle