You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
7.7 KiB
225 lines
7.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import argparse
|
|
import time
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.profiler as profiler
|
|
|
|
SEED = 1
|
|
DTYPE = "float32"
|
|
|
|
# random seed must set before configuring the network.
|
|
# fluid.default_startup_program().random_seed = SEED
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser("mnist model benchmark.")
|
|
parser.add_argument(
|
|
'--batch_size', type=int, default=128, help='The minibatch size.')
|
|
parser.add_argument(
|
|
'--skip_batch_num',
|
|
type=int,
|
|
default=5,
|
|
help='The first num of minibatch num to skip, for better performance test'
|
|
)
|
|
parser.add_argument(
|
|
'--iterations', type=int, default=35, help='The number of minibatches.')
|
|
parser.add_argument(
|
|
'--pass_num', type=int, default=5, help='The number of passes.')
|
|
parser.add_argument(
|
|
'--device',
|
|
type=str,
|
|
default='GPU',
|
|
choices=['CPU', 'GPU'],
|
|
help='The device type.')
|
|
parser.add_argument(
|
|
'--infer_only', action='store_true', help='If set, run forward only.')
|
|
parser.add_argument(
|
|
'--use_cprof', action='store_true', help='If set, use cProfile.')
|
|
parser.add_argument(
|
|
'--use_nvprof',
|
|
action='store_true',
|
|
help='If set, use nvprof for CUDA.')
|
|
parser.add_argument(
|
|
'--with_test',
|
|
action='store_true',
|
|
help='If set, test the testset during training.')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def cnn_model(data):
|
|
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
|
input=data,
|
|
filter_size=5,
|
|
num_filters=20,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu")
|
|
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
|
input=conv_pool_1,
|
|
filter_size=5,
|
|
num_filters=50,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu")
|
|
|
|
# TODO(dzhwinter) : refine the initializer and random seed settting
|
|
SIZE = 10
|
|
input_shape = conv_pool_2.shape
|
|
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
|
|
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
|
|
|
|
predict = fluid.layers.fc(
|
|
input=conv_pool_2,
|
|
size=SIZE,
|
|
act="softmax",
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.NormalInitializer(
|
|
loc=0.0, scale=scale)))
|
|
return predict
|
|
|
|
|
|
def eval_test(exe, batch_acc, batch_size_tensor, inference_program):
|
|
test_reader = paddle.batch(
|
|
paddle.dataset.mnist.test(), batch_size=args.batch_size)
|
|
test_pass_acc = fluid.average.WeightedAverage()
|
|
for batch_id, data in enumerate(test_reader()):
|
|
img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]),
|
|
data)).astype(DTYPE)
|
|
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
|
y_data = y_data.reshape([len(y_data), 1])
|
|
|
|
acc, weight = exe.run(inference_program,
|
|
feed={"pixel": img_data,
|
|
"label": y_data},
|
|
fetch_list=[batch_acc, batch_size_tensor])
|
|
test_pass_acc.add(value=acc, weight=weight)
|
|
pass_acc = test_pass_acc.eval()
|
|
return pass_acc
|
|
|
|
|
|
def run_benchmark(model, args):
|
|
if args.use_cprof:
|
|
pr = cProfile.Profile()
|
|
pr.enable()
|
|
start_time = time.time()
|
|
# Input data
|
|
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
# Train program
|
|
predict = model(images)
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
# Evaluator
|
|
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
|
|
batch_acc = fluid.layers.accuracy(
|
|
input=predict, label=label, total=batch_size_tensor)
|
|
|
|
# inference program
|
|
inference_program = fluid.default_main_program().clone()
|
|
|
|
# Optimization
|
|
opt = fluid.optimizer.AdamOptimizer(
|
|
learning_rate=0.001, beta1=0.9, beta2=0.999)
|
|
opt.minimize(avg_cost)
|
|
|
|
fluid.memory_optimize(fluid.default_main_program())
|
|
|
|
# Initialize executor
|
|
place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
|
|
# Parameter initialization
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
# Reader
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.mnist.train(), batch_size=args.batch_size)
|
|
|
|
accuracy = fluid.metrics.Accuracy()
|
|
iters, num_samples, start_time = 0, 0, time.time()
|
|
for pass_id in range(args.pass_num):
|
|
accuracy.reset()
|
|
train_accs = []
|
|
train_losses = []
|
|
for batch_id, data in enumerate(train_reader()):
|
|
if iters == args.skip_batch_num:
|
|
start_time = time.time()
|
|
num_samples = 0
|
|
if iters == args.iterations:
|
|
break
|
|
img_data = np.array(
|
|
map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE)
|
|
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
|
y_data = y_data.reshape([len(y_data), 1])
|
|
|
|
outs = exe.run(
|
|
fluid.default_main_program(),
|
|
feed={"pixel": img_data,
|
|
"label": y_data},
|
|
fetch_list=[avg_cost, batch_acc, batch_size_tensor]
|
|
) # The accuracy is the accumulation of batches, but not the current batch.
|
|
accuracy.update(value=outs[1], weight=outs[2])
|
|
iters += 1
|
|
num_samples += len(y_data)
|
|
loss = np.array(outs[0])
|
|
acc = np.array(outs[1])
|
|
train_losses.append(loss)
|
|
train_accs.append(acc)
|
|
print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
|
|
(pass_id, iters, loss, acc))
|
|
|
|
print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
|
|
(pass_id, np.mean(train_losses), np.mean(train_accs)))
|
|
train_elapsed = time.time() - start_time
|
|
examples_per_sec = num_samples / train_elapsed
|
|
|
|
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
|
|
(num_samples, train_elapsed, examples_per_sec))
|
|
# evaluation
|
|
if args.with_test:
|
|
test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor,
|
|
inference_program)
|
|
exit(0)
|
|
|
|
|
|
def print_arguments(args):
|
|
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
|
|
vars(args)['device'] == 'GPU')
|
|
print('----------- mnist Configuration Arguments -----------')
|
|
for arg, value in sorted(vars(args).iteritems()):
|
|
print('%s: %s' % (arg, value))
|
|
print('------------------------------------------------')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args()
|
|
print_arguments(args)
|
|
if args.use_nvprof and args.device == 'GPU':
|
|
with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
|
|
run_benchmark(cnn_model, args)
|
|
else:
|
|
run_benchmark(cnn_model, args)
|