You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
6.2 KiB
175 lines
6.2 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/details/reduce_op_handle.h"
|
|
#include "paddle/fluid/framework/details/container_cast.h"
|
|
#include "paddle/fluid/framework/details/reduce_and_gather.h"
|
|
#include "paddle/fluid/framework/details/variable_visitor.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
namespace details {
|
|
|
|
void ReduceOpHandle::RunImpl() {
|
|
if (places_.size() == 1) return;
|
|
// the input and output may have dummy var.
|
|
auto in_var_handles = DynamicCast<VarHandle>(inputs_);
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
in_var_handles.size(), places_.size(),
|
|
"The number of output should equal to the number of places.");
|
|
|
|
VarHandle *out_var_handle;
|
|
{
|
|
auto out_var_handles = DynamicCast<VarHandle>(outputs_);
|
|
|
|
PADDLE_ENFORCE_EQ(out_var_handles.size(), 1,
|
|
"The number of output should be one.");
|
|
out_var_handle = out_var_handles.front();
|
|
}
|
|
|
|
auto in_0_handle = in_var_handles[0];
|
|
|
|
std::vector<const Scope *> var_scopes;
|
|
for (auto *s : local_scopes_) {
|
|
var_scopes.emplace_back(s->FindVar(kLocalExecScopeName)->Get<Scope *>());
|
|
}
|
|
|
|
auto pre_in_var =
|
|
var_scopes.at(in_0_handle->scope_idx_)->FindVar(in_0_handle->name_);
|
|
PADDLE_ENFORCE_NOT_NULL(pre_in_var);
|
|
|
|
// Wait input done, this Wait is asynchronous operation
|
|
WaitInputVarGenerated(in_var_handles);
|
|
|
|
// NOTE: The Places of all input tensor must be all on CPU or all on GPU.
|
|
std::vector<platform::Place> in_places; // used to get dev_ctx
|
|
for (auto *in_handle : in_var_handles) {
|
|
in_places.emplace_back(in_handle->place_);
|
|
auto in_var =
|
|
var_scopes.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
|
|
PADDLE_ENFORCE_NOT_NULL(in_var);
|
|
VariableVisitor::EnforceShapeAndDTypeEQ(*pre_in_var, *in_var);
|
|
}
|
|
|
|
auto out_var =
|
|
var_scopes.at(out_var_handle->scope_idx_)->FindVar(out_var_handle->name_);
|
|
PADDLE_ENFORCE_NOT_NULL(out_var);
|
|
|
|
// NOTE: The tensors' Place of input and output must be all on GPU or all on
|
|
// CPU.
|
|
auto in_p = VariableVisitor::GetMutableTensor(pre_in_var).place();
|
|
platform::Place t_out_p;
|
|
if (platform::is_gpu_place(in_p)) {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(out_var_handle->place_),
|
|
"Places of input and output must be all on GPU.");
|
|
t_out_p = out_var_handle->place_;
|
|
} else {
|
|
t_out_p = platform::CPUPlace();
|
|
}
|
|
|
|
if (pre_in_var->IsType<framework::SelectedRows>()) {
|
|
std::vector<const SelectedRows *> in_selected_rows =
|
|
GetInputValues<SelectedRows>(in_var_handles, var_scopes);
|
|
|
|
GatherSelectedRows(in_selected_rows, in_places, dev_ctxes_, t_out_p,
|
|
out_var->GetMutable<framework::SelectedRows>());
|
|
} else {
|
|
std::vector<const LoDTensor *> lod_tensors =
|
|
GetInputValues<LoDTensor>(in_var_handles, var_scopes);
|
|
|
|
if (paddle::platform::is_cpu_place(lod_tensors[0]->place())) {
|
|
ReduceLoDTensor func(lod_tensors,
|
|
out_var->GetMutable<framework::LoDTensor>());
|
|
VisitDataType(ToDataType(lod_tensors[0]->type()), func);
|
|
} else if (paddle::platform::is_gpu_place(lod_tensors[0]->place())) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
auto pre_in = pre_in_var->Get<framework::LoDTensor>();
|
|
VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var);
|
|
VariableVisitor::GetMutableTensor(out_var).mutable_data(
|
|
out_var_handle->place_, pre_in.type());
|
|
|
|
auto out_p = out_var_handle->place_;
|
|
int root_id = boost::get<platform::CUDAPlace>(out_p).device;
|
|
std::vector<std::function<void()>> all_reduce_calls;
|
|
for (size_t i = 0; i < var_scopes.size(); ++i) {
|
|
auto &p = in_places[i];
|
|
auto &lod_tensor = *lod_tensors[i];
|
|
|
|
int dev_id = boost::get<platform::CUDAPlace>(p).device;
|
|
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
|
|
|
|
void *buffer = const_cast<void *>(lod_tensor.data<void>());
|
|
void *recvbuffer = nullptr;
|
|
if (root_id == dev_id) {
|
|
recvbuffer =
|
|
out_var->GetMutable<framework::LoDTensor>()->mutable_data(
|
|
out_var_handle->place_);
|
|
}
|
|
|
|
int type = platform::ToNCCLDataType(lod_tensor.type());
|
|
size_t numel = static_cast<size_t>(lod_tensor.numel());
|
|
all_reduce_calls.emplace_back(
|
|
[buffer, recvbuffer, type, numel, root_id, &nccl_ctx] {
|
|
PADDLE_ENFORCE(platform::dynload::ncclReduce(
|
|
buffer, recvbuffer, numel, static_cast<ncclDataType_t>(type),
|
|
ncclSum, root_id, nccl_ctx.comm_, nccl_ctx.stream()));
|
|
});
|
|
}
|
|
|
|
this->RunAndRecordEvent([&] {
|
|
platform::NCCLGroupGuard guard;
|
|
for (auto &call : all_reduce_calls) {
|
|
call();
|
|
}
|
|
});
|
|
#else
|
|
PADDLE_THROW("CUDA is not enabled.");
|
|
#endif
|
|
} else {
|
|
PADDLE_THROW("Place should be CPUPlace or CUDAPlace.");
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<const T *> ReduceOpHandle::GetInputValues(
|
|
const std::vector<VarHandle *> &in_var_handles,
|
|
const std::vector<const Scope *> &var_scopes) const {
|
|
std::vector<const T *> in_selected_rows;
|
|
for (auto *in_handle : in_var_handles) {
|
|
auto &in_sr = var_scopes.at(in_handle->scope_idx_)
|
|
->FindVar(in_handle->name_)
|
|
->Get<T>();
|
|
in_selected_rows.emplace_back(&in_sr);
|
|
}
|
|
return in_selected_rows;
|
|
}
|
|
|
|
void ReduceOpHandle::WaitInputVarGenerated(
|
|
const std::vector<VarHandle *> &in_var_handles) {
|
|
for (auto *in : in_var_handles) {
|
|
if (in->generated_op_) {
|
|
for (auto pair : dev_ctxes_) {
|
|
in->generated_op_->Wait(pair.second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string ReduceOpHandle::Name() const { return "reduce"; }
|
|
} // namespace details
|
|
} // namespace framework
|
|
} // namespace paddle
|