You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
152 lines
5.5 KiB
152 lines
5.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <thrust/execution_policy.h>
|
|
#include <thrust/sort.h>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/argsort_op.h"
|
|
#include "paddle/fluid/platform/assert.h"
|
|
#include "paddle/fluid/platform/cuda_device_function.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using platform::PADDLE_CUDA_NUM_THREADS;
|
|
|
|
const int kMaxRank = 9; // The max rank of a tensor allowed in Fluid
|
|
|
|
__global__ void ComputeTargetIdx(const int64_t* in_dims, int dims_size,
|
|
int axis, int64_t n, int64_t* trg_idx,
|
|
int64_t* med_ids) {
|
|
int64_t index = threadIdx.x + blockDim.x * blockIdx.x;
|
|
if (index < n) {
|
|
int64_t shape_out_axis[kMaxRank - 1] = {0};
|
|
int64_t dims_out_axis[kMaxRank - 1] = {0};
|
|
int64_t tmp = index;
|
|
int64_t pos_in_axis = 0;
|
|
int64_t i = dims_size - 2;
|
|
int64_t dim_axis = 0;
|
|
for (int64_t j = dims_size - 1; j >= 0; --j) {
|
|
int64_t dim = in_dims[j];
|
|
if (j != axis) {
|
|
shape_out_axis[i] = tmp % dim;
|
|
dims_out_axis[i] = dim;
|
|
i--;
|
|
} else {
|
|
dim_axis = dim;
|
|
pos_in_axis = tmp % dim_axis;
|
|
}
|
|
tmp /= dim;
|
|
}
|
|
int64_t group = (dims_size > 1) ? shape_out_axis[0] : 0;
|
|
for (int64_t j = 0; j < dims_size - 2; ++j) {
|
|
group = group * dims_out_axis[j + 1] + shape_out_axis[j + 1];
|
|
}
|
|
|
|
int64_t traget_idx = group * dim_axis + pos_in_axis;
|
|
trg_idx[index] = traget_idx;
|
|
med_ids[traget_idx] = pos_in_axis;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void PermuteInData(const T* in, const int64_t* trg_idx, int64_t n,
|
|
T* med_out) {
|
|
int index = threadIdx.x + blockDim.x * blockIdx.x;
|
|
if (index < n) {
|
|
med_out[trg_idx[index]] = in[index];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void Sort(int64_t axis_dim, int64_t groups, T* med_out,
|
|
int64_t* med_ids) {
|
|
int index = threadIdx.x + blockDim.x * blockIdx.x;
|
|
if (index < groups) {
|
|
thrust::sort_by_key(thrust::device, med_out + index * axis_dim,
|
|
med_out + axis_dim * (1 + index),
|
|
med_ids + index * axis_dim);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void PermuteMediateData(const T* med_out, const int64_t* med_ids,
|
|
const int64_t* trg_idx, int64_t n, T* out,
|
|
int64_t* indices) {
|
|
int index = threadIdx.x + blockDim.x * blockIdx.x;
|
|
if (index < n) {
|
|
out[index] = med_out[trg_idx[index]];
|
|
indices[index] = med_ids[trg_idx[index]];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class ArgsortOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* output = ctx.Output<Tensor>("Out");
|
|
auto* indices = ctx.Output<Tensor>("Indices");
|
|
int axis = ctx.Attr<int>("axis");
|
|
|
|
auto in_dims = input->dims();
|
|
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
|
|
|
|
const T* in_data = input->data<T>();
|
|
T* out_data = output->mutable_data<T>(ctx.GetPlace());
|
|
int64_t* ids_data = indices->mutable_data<int64_t>(ctx.GetPlace());
|
|
|
|
int64_t numel = input->numel();
|
|
int64_t groups = numel / in_dims[axis];
|
|
|
|
std::vector<int64_t> in_dims_vec = vectorize(in_dims);
|
|
thrust::device_vector<int64_t> in_dims_dev(in_dims_vec.begin(),
|
|
in_dims_vec.end());
|
|
int64_t* in_dims_data = thrust::raw_pointer_cast(in_dims_dev.data());
|
|
// Mediate tensor for sorting data and indices
|
|
Tensor mediate_output, mediate_indices;
|
|
T* med_out_data =
|
|
mediate_output.mutable_data<T>(input->dims(), ctx.GetPlace());
|
|
int64_t* med_ids_data =
|
|
mediate_indices.mutable_data<int64_t>(in_dims, ctx.GetPlace());
|
|
// Target index of each element along the given axis in the mediate tensors
|
|
Tensor trg_idx_t;
|
|
int64_t* trg_idx = trg_idx_t.mutable_data<int64_t>(in_dims, ctx.GetPlace());
|
|
|
|
auto stream = ctx.cuda_device_context().stream();
|
|
const int num_threads = PADDLE_CUDA_NUM_THREADS;
|
|
|
|
ComputeTargetIdx<<<(numel - 1) / num_threads + 1, num_threads, 0, stream>>>(
|
|
in_dims_data, in_dims.size(), axis, numel, trg_idx, med_ids_data);
|
|
|
|
PermuteInData<<<(numel - 1) / num_threads + 1, num_threads, 0, stream>>>(
|
|
in_data, trg_idx, numel, med_out_data);
|
|
|
|
Sort<<<(groups - 1) / num_threads + 1, num_threads, 0, stream>>>(
|
|
in_dims[axis], groups, med_out_data, med_ids_data);
|
|
|
|
PermuteMediateData<<<(numel - 1) / num_threads + 1, num_threads, 0,
|
|
stream>>>(med_out_data, med_ids_data, trg_idx, numel,
|
|
out_data, ids_data);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OP_CUDA_KERNEL(argsort, paddle::operators::ArgsortOpCUDAKernel<float>,
|
|
paddle::operators::ArgsortOpCUDAKernel<double>);
|