You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
5.9 KiB
158 lines
5.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <algorithm>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/edit_distance_op.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
#include "paddle/fluid/platform/gpu_info.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using platform::PADDLE_CUDA_NUM_THREADS;
|
|
|
|
template <typename T>
|
|
__global__ void FillFirstRow(T* dist, const int N) {
|
|
int idx = blockDim.x * blockIdx.x + threadIdx.x;
|
|
if (idx < N + 1) {
|
|
dist[idx] = idx;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void FillFirstColumn(T* dist, const int M, const int N) {
|
|
int idx = blockDim.x * blockIdx.x + threadIdx.x;
|
|
if (idx < M + 1) {
|
|
dist[idx * (N + 1)] = idx;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void Levenshtein(T* dist, const int64_t* x1, const int64_t* x2,
|
|
const int M, const int N, const int start) {
|
|
int idx = blockDim.x * blockIdx.x + threadIdx.x;
|
|
int offset = N;
|
|
int index = start + idx * offset;
|
|
int row = index / (N + 1);
|
|
int col = index % (N + 1);
|
|
if (row > 0 && col > 0 && row < M + 1 && col < N + 1) {
|
|
int cost = x1[row - 1] == x2[col - 1] ? 0 : 1;
|
|
int dels = dist[(row - 1) * (N + 1) + col] + 1;
|
|
int ins = dist[row * (N + 1) + col - 1] + 1;
|
|
int subs = dist[(row - 1) * (N + 1) + (col - 1)] + cost;
|
|
dist[index] = min(dels, min(ins, subs));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void SetOutput(T* out, const T* dist, const int M, const int N,
|
|
bool normalized) {
|
|
int idx = blockDim.x * blockIdx.x + threadIdx.x;
|
|
if (idx == 0) {
|
|
out[0] = normalized ? dist[M * (N + 1) + N] / N : dist[M * (N + 1) + N];
|
|
}
|
|
}
|
|
|
|
template <typename Place, typename T>
|
|
class EditDistanceGPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const {
|
|
auto* out_t = ctx.Output<framework::Tensor>("Out");
|
|
|
|
auto* x1_t = ctx.Input<framework::LoDTensor>("Hyps");
|
|
auto* x2_t = ctx.Input<framework::LoDTensor>("Refs");
|
|
auto* sequence_num = ctx.Output<framework::Tensor>("SequenceNum");
|
|
sequence_num->mutable_data<int64_t>(ctx.GetPlace());
|
|
|
|
auto normalized = ctx.Attr<bool>("normalized");
|
|
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
|
|
ctx.device_context())
|
|
.stream();
|
|
|
|
auto hyp_lod = x1_t->lod()[0];
|
|
auto ref_lod = x2_t->lod()[0];
|
|
PADDLE_ENFORCE(
|
|
hyp_lod.size() == ref_lod.size(),
|
|
"Input(Hyps) and Input(Refs) must have the same batch size.");
|
|
for (size_t i = 1; i < ref_lod.size(); ++i) {
|
|
PADDLE_ENFORCE(ref_lod[i] > ref_lod[i - 1],
|
|
"Reference string %d is empty.", i);
|
|
}
|
|
|
|
const size_t num_strs = hyp_lod.size() - 1;
|
|
math::SetConstant<platform::CUDADeviceContext, int64_t> set_constant;
|
|
set_constant(ctx.template device_context<platform::CUDADeviceContext>(),
|
|
sequence_num, static_cast<int64_t>(num_strs));
|
|
|
|
out_t->Resize({static_cast<int64_t>(num_strs), 1});
|
|
out_t->mutable_data<T>(ctx.GetPlace());
|
|
auto out = out_t->data<T>();
|
|
|
|
T distance = 0.0;
|
|
for (size_t num = 0; num < num_strs; num++) {
|
|
auto m = static_cast<int64_t>(hyp_lod[num + 1] - hyp_lod[num]);
|
|
auto n = static_cast<int64_t>(ref_lod[num + 1] - ref_lod[num]);
|
|
if (m == 0 || n == 0) {
|
|
distance = std::max(m, n);
|
|
if (normalized) {
|
|
PADDLE_ENFORCE(n > 0,
|
|
"The reference string (#%d) cannot be empty "
|
|
"when Attr(normalized) is enabled.",
|
|
n);
|
|
distance = distance / n;
|
|
}
|
|
memory::Copy(boost::get<Place>(ctx.GetPlace()), out + num,
|
|
platform::CPUPlace(), &distance, sizeof(T), stream);
|
|
} else {
|
|
framework::Tensor dist_t;
|
|
dist_t.Resize({m + 1, n + 1});
|
|
dist_t.mutable_data<T>(ctx.GetPlace());
|
|
auto dist = dist_t.data<T>();
|
|
auto x1 = x1_t->data<int64_t>() + hyp_lod[num];
|
|
auto x2 = x2_t->data<int64_t>() + ref_lod[num];
|
|
|
|
FillFirstColumn<T><<<1 + m / PADDLE_CUDA_NUM_THREADS,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, m, n);
|
|
|
|
FillFirstRow<T><<<1 + n / PADDLE_CUDA_NUM_THREADS,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, n);
|
|
// Compute the elements of distance matrix in the anti-diagonal diretion
|
|
for (int64_t slice = 2; slice < m + n + 1; ++slice) {
|
|
int z_m = slice < m + 1 ? 0 : slice - m;
|
|
int z_n = slice < n + 1 ? 0 : slice - n;
|
|
int size = slice - (z_m + z_n) + 1; // number of elments in the same
|
|
// anti-diagonal line to update
|
|
// the start index at which computes from
|
|
int start = slice < n + 1 ? slice : (z_n + 1) * (n + 1) - 1;
|
|
Levenshtein<T><<<1 + (size - 1) / PADDLE_CUDA_NUM_THREADS,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(dist, x1, x2,
|
|
m, n, start);
|
|
}
|
|
SetOutput<T><<<1, 1, 0, stream>>>(out + num, dist, m, n, normalized);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
edit_distance,
|
|
ops::EditDistanceGPUKernel<paddle::platform::CUDAPlace, float>);
|