You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/tests/demo/fc_gan.py

158 lines
5.2 KiB

import errno
import math
import os
import matplotlib
import numpy
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
NOISE_SIZE = 100
NUM_PASS = 1000
NUM_REAL_IMGS_IN_BATCH = 121
NUM_TRAIN_TIMES_OF_DG = 3
LEARNING_RATE = 2e-5
def D(x):
hidden = fluid.layers.fc(input=x,
size=200,
act='relu',
param_attr='D.w1',
bias_attr='D.b1')
logits = fluid.layers.fc(input=hidden,
size=1,
act=None,
param_attr='D.w2',
bias_attr='D.b2')
return logits
def G(x):
hidden = fluid.layers.fc(input=x,
size=200,
act='relu',
param_attr='G.w1',
bias_attr='G.b1')
img = fluid.layers.fc(input=hidden,
size=28 * 28,
act='tanh',
param_attr='G.w2',
bias_attr='G.b2')
return img
def plot(gen_data):
gen_data.resize(gen_data.shape[0], 28, 28)
n = int(math.ceil(math.sqrt(gen_data.shape[0])))
fig = plt.figure(figsize=(n, n))
gs = gridspec.GridSpec(n, n)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(gen_data):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
def main():
try:
os.makedirs("./out")
except OSError as e:
if e.errno != errno.EEXIST:
raise
startup_program = fluid.Program()
d_program = fluid.Program()
dg_program = fluid.Program()
with fluid.program_guard(d_program, startup_program):
img = fluid.layers.data(name='img', shape=[784], dtype='float32')
d_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
x=D(img),
label=fluid.layers.data(
name='label', shape=[1], dtype='float32'))
d_loss = fluid.layers.mean(x=d_loss)
with fluid.program_guard(dg_program, startup_program):
noise = fluid.layers.data(
name='noise', shape=[NOISE_SIZE], dtype='float32')
g_img = G(x=noise)
g_program = dg_program.clone()
dg_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
x=D(g_img),
label=fluid.layers.fill_constant_batch_size_like(
input=noise, dtype='float32', shape=[-1, 1], value=1.0))
dg_loss = fluid.layers.mean(x=dg_loss)
opt = fluid.optimizer.Adam(learning_rate=LEARNING_RATE)
opt.minimize(loss=d_loss, startup_program=startup_program)
opt.minimize(
loss=dg_loss,
startup_program=startup_program,
parameter_list=[
p.name for p in g_program.global_block().all_parameters()
])
exe = fluid.Executor(fluid.CPUPlace())
exe.run(startup_program)
num_true = NUM_REAL_IMGS_IN_BATCH
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=60000),
batch_size=num_true)
for pass_id in range(NUM_PASS):
for batch_id, data in enumerate(train_reader()):
num_true = len(data)
n = numpy.random.uniform(
low=-1.0, high=1.0,
size=[num_true * NOISE_SIZE]).astype('float32').reshape(
[num_true, NOISE_SIZE])
generated_img = exe.run(g_program,
feed={'noise': n},
fetch_list={g_img})[0]
real_data = numpy.array(map(lambda x: x[0], data)).astype('float32')
real_data = real_data.reshape(num_true, 784)
total_data = numpy.concatenate([real_data, generated_img])
total_label = numpy.concatenate([
numpy.ones(
shape=[real_data.shape[0], 1], dtype='float32'),
numpy.zeros(
shape=[real_data.shape[0], 1], dtype='float32')
])
d_loss_np = exe.run(d_program,
feed={'img': total_data,
'label': total_label},
fetch_list={d_loss})[0]
for _ in xrange(NUM_TRAIN_TIMES_OF_DG):
n = numpy.random.uniform(
low=-1.0, high=1.0,
size=[2 * num_true * NOISE_SIZE]).astype('float32').reshape(
[2 * num_true, NOISE_SIZE, 1, 1])
dg_loss_np = exe.run(dg_program,
feed={'noise': n},
fetch_list={dg_loss})[0]
print("Pass ID={0}, Batch ID={1}, D-Loss={2}, DG-Loss={3}".format(
pass_id, batch_id, d_loss_np, dg_loss_np))
# generate image each batch
fig = plot(generated_img)
plt.savefig(
'out/{0}.png'.format(str(pass_id).zfill(3)), bbox_inches='tight')
plt.close(fig)
if __name__ == '__main__':
main()