You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							289 lines
						
					
					
						
							9.8 KiB
						
					
					
				
			
		
		
	
	
							289 lines
						
					
					
						
							9.8 KiB
						
					
					
				| #   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| import six
 | |
| 
 | |
| import paddle.fluid.core as core
 | |
| import paddle.fluid.proto.framework_pb2 as framework_pb2
 | |
| 
 | |
| 
 | |
| def get_all_op_protos():
 | |
|     """
 | |
|     Get all registered op proto from PaddlePaddle C++ end.
 | |
|     :return: A list of registered OpProto.
 | |
|     """
 | |
|     protostrs = core.get_all_op_protos()
 | |
|     ret_values = []
 | |
|     for pbstr in protostrs:
 | |
|         op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
 | |
|         ret_values.append(op_proto)
 | |
|     return ret_values
 | |
| 
 | |
| 
 | |
| def is_str(s):
 | |
|     return isinstance(s, six.string_types)
 | |
| 
 | |
| 
 | |
| class OpDescCreationMethod(object):
 | |
|     """
 | |
|     Convert the user's input(only keyword arguments are supported) to OpDesc
 | |
|     based on the OpProto.
 | |
| 
 | |
|     :param op_proto: The OpProto object.
 | |
|     :type op_proto: op_proto_pb2.OpProto
 | |
|     """
 | |
| 
 | |
|     def __init__(self, op_proto):
 | |
|         if not isinstance(op_proto, framework_pb2.OpProto):
 | |
|             raise TypeError(
 | |
|                 "Type of op_proto should be OpProto in PaddlePaddle.")
 | |
|         self.__op_proto__ = op_proto
 | |
| 
 | |
|     def __call__(self, *args, **kwargs):
 | |
|         """
 | |
|         Convert user's input to OpDesc. Only keyword arguments are supported.
 | |
|         :return: The OpDesc based on user input.
 | |
|         :rtype: op_desc_pb2.OpDesc
 | |
|         """
 | |
|         if len(args) != 0:
 | |
|             raise ValueError("Only keyword arguments are supported.")
 | |
|         op_desc = framework_pb2.OpDesc()
 | |
|         for input_parameter in self.__op_proto__.inputs:
 | |
|             input_arguments = kwargs.get(input_parameter.name, [])
 | |
|             if is_str(input_arguments):
 | |
|                 input_arguments = [input_arguments]
 | |
| 
 | |
|             if not input_parameter.duplicable and len(input_arguments) > 1:
 | |
|                 raise ValueError(
 | |
|                     "Input %s expects only one input, but %d are given." %
 | |
|                     (input_parameter.name, len(input_arguments)))
 | |
| 
 | |
|             ipt = op_desc.inputs.add()
 | |
|             ipt.parameter = input_parameter.name
 | |
|             ipt.arguments.extend(input_arguments)
 | |
| 
 | |
|         for output_parameter in self.__op_proto__.outputs:
 | |
|             output_arguments = kwargs.get(output_parameter.name, [])
 | |
|             if is_str(output_arguments):
 | |
|                 output_arguments = [output_arguments]
 | |
| 
 | |
|             if not output_parameter.duplicable and len(output_arguments) > 1:
 | |
|                 raise ValueError(
 | |
|                     "Output %s expects only one output, but %d are given." %
 | |
|                     (output_parameter.name, len(output_arguments)))
 | |
| 
 | |
|             out = op_desc.outputs.add()
 | |
|             out.parameter = output_parameter.name
 | |
|             out.arguments.extend(output_arguments)
 | |
| 
 | |
|         # Types
 | |
|         op_desc.type = self.__op_proto__.type
 | |
| 
 | |
|         # Attrs
 | |
|         for attr in self.__op_proto__.attrs:
 | |
|             if attr.generated:
 | |
|                 continue
 | |
|             user_defined_attr = kwargs.get(attr.name, None)
 | |
|             if user_defined_attr is not None:
 | |
|                 new_attr = op_desc.attrs.add()
 | |
|                 new_attr.name = attr.name
 | |
|                 new_attr.type = attr.type
 | |
|                 if isinstance(user_defined_attr, np.ndarray):
 | |
|                     user_defined_attr = user_defined_attr.tolist()
 | |
|                 if attr.type == framework_pb2.INT:
 | |
|                     new_attr.i = user_defined_attr
 | |
|                 elif attr.type == framework_pb2.FLOAT:
 | |
|                     new_attr.f = user_defined_attr
 | |
|                 elif attr.type == framework_pb2.STRING:
 | |
|                     new_attr.s = user_defined_attr
 | |
|                 elif attr.type == framework_pb2.BOOLEAN:
 | |
|                     new_attr.b = user_defined_attr
 | |
|                 elif attr.type == framework_pb2.INTS:
 | |
|                     new_attr.ints.extend(user_defined_attr)
 | |
|                 elif attr.type == framework_pb2.FLOATS:
 | |
|                     new_attr.floats.extend(user_defined_attr)
 | |
|                 elif attr.type == framework_pb2.STRINGS:
 | |
|                     new_attr.strings.extend(user_defined_attr)
 | |
|                 elif attr.type == framework_pb2.BOOLEANS:
 | |
|                     new_attr.bools.extend(user_defined_attr)
 | |
|                 elif attr.type == framework_pb2.INT_PAIRS:
 | |
|                     for p in user_defined_attr:
 | |
|                         pair = new_attr.int_pairs.add()
 | |
|                         pair.first = p[0]
 | |
|                         pair.second = p[1]
 | |
|                 else:
 | |
|                     raise NotImplementedError(
 | |
|                         "A not supported attribute type: %s." % (
 | |
|                             str(attr.type)))
 | |
| 
 | |
|         return op_desc
 | |
| 
 | |
|     @staticmethod
 | |
|     def any_is_true(generator):
 | |
|         """
 | |
|         Reduce a boolean array to a single boolean parameter. If any element in
 | |
|         the array is True, this function will return True, otherwise False.
 | |
|         """
 | |
|         for flag in generator:
 | |
|             if flag:
 | |
|                 return True
 | |
|         return False
 | |
| 
 | |
| 
 | |
| class OpInfo(object):
 | |
|     def __init__(self, name, method, inputs, outputs, attrs):
 | |
|         self.name = name
 | |
|         self.method = method
 | |
|         self.inputs = inputs
 | |
|         self.outputs = outputs
 | |
|         self.attrs = attrs
 | |
| 
 | |
| 
 | |
| def create_op_creation_method(op_proto):
 | |
|     """
 | |
|     Generate op creation method for an OpProto.
 | |
|     """
 | |
|     method = OpDescCreationMethod(op_proto)
 | |
| 
 | |
|     def __impl__(*args, **kwargs):
 | |
|         opdesc = method(*args, **kwargs)
 | |
|         return core.Operator.create(opdesc.SerializeToString())
 | |
| 
 | |
|     return OpInfo(
 | |
|         method=__impl__,
 | |
|         name=op_proto.type,
 | |
|         inputs=[(var.name, var.duplicable) for var in op_proto.inputs],
 | |
|         outputs=[(var.name, var.duplicable) for var in op_proto.outputs],
 | |
|         attrs=[attr.name for attr in op_proto.attrs])
 | |
| 
 | |
| 
 | |
| class OperatorFactory(object):
 | |
|     def __init__(self):
 | |
|         self.op_methods = dict()
 | |
| 
 | |
|         for op_proto in get_all_op_protos():
 | |
|             method = create_op_creation_method(op_proto)
 | |
|             self.op_methods[method.name] = method
 | |
| 
 | |
|     def __call__(self, *args, **kwargs):
 | |
|         if "type" in kwargs:
 | |
|             if len(args) != 0:
 | |
|                 raise ValueError(
 | |
|                     "Except the argument \"type\","
 | |
|                     "all of the other arguments should be keyword arguments.")
 | |
|             t = kwargs.pop("type")
 | |
|         else:
 | |
|             if len(args) != 1:
 | |
|                 raise ValueError(
 | |
|                     "Except the argument \"type\","
 | |
|                     "all of the other arguments should be keyword arguments.")
 | |
|             t = args[0]
 | |
| 
 | |
|         return self.get_op_info(t).method(**kwargs)
 | |
| 
 | |
|     def types(self):
 | |
|         return list(self.op_methods.keys())
 | |
| 
 | |
|     def get_op_info(self, t):
 | |
|         if t not in self.op_methods:
 | |
|             raise ValueError("The operator: %s is not registered." % t)
 | |
|         return self.op_methods.get(t)
 | |
| 
 | |
|     def get_op_input_names(self, type):
 | |
|         return [x[0] for x in self.get_op_info(type).inputs]
 | |
| 
 | |
|     def get_op_inputs(self, type):
 | |
|         return self.get_op_info(type).inputs
 | |
| 
 | |
|     def get_op_output_names(self, type):
 | |
|         return [x[0] for x in self.get_op_info(type).outputs]
 | |
| 
 | |
|     def get_op_outputs(self, type):
 | |
|         return self.get_op_info(type).outputs
 | |
| 
 | |
|     def get_op_attr_names(self, type):
 | |
|         return self.get_op_info(type).attrs
 | |
| 
 | |
| 
 | |
| class __RecurrentOp__(object):
 | |
|     __proto__ = None
 | |
|     type = "recurrent"
 | |
| 
 | |
|     def __init__(self):
 | |
|         # cache recurrent_op's proto
 | |
|         if self.__proto__ is None:
 | |
|             for op_proto in get_all_op_protos():
 | |
|                 if op_proto.type == self.type:
 | |
|                     self.__proto__ = op_proto
 | |
| 
 | |
|     def __call__(self, *args, **kwargs):
 | |
|         if self.type not in args and "type" not in kwargs:
 | |
|             kwargs["type"] = self.type
 | |
|         # create proto
 | |
|         create_method = OpDescCreationMethod(self.__proto__)
 | |
|         proto = create_method(*args, **kwargs)
 | |
|         # create rnnop
 | |
|         return core.RecurrentOp.create(proto.SerializeToString())
 | |
| 
 | |
| 
 | |
| class __DynamicRecurrentOp__(object):
 | |
|     __proto__ = None
 | |
|     type = "dynamic_recurrent"
 | |
| 
 | |
|     def __init__(self):
 | |
|         # cache recurrent_op's proto
 | |
|         if self.__proto__ is None:
 | |
|             for op_proto in get_all_op_protos():
 | |
|                 if op_proto.type == self.type:
 | |
|                     self.__proto__ = op_proto
 | |
| 
 | |
|     def __call__(self, *args, **kwargs):
 | |
|         if self.type not in args and "type" not in kwargs:
 | |
|             kwargs["type"] = self.type
 | |
|         # create proto
 | |
|         create_method = OpDescCreationMethod(self.__proto__)
 | |
|         proto = create_method(*args, **kwargs)
 | |
|         # create rnnop
 | |
|         return core.DynamicRecurrentOp.create(proto.SerializeToString())
 | |
| 
 | |
| 
 | |
| class __CondOp__(object):
 | |
|     __proto__ = None
 | |
|     type = "cond"
 | |
| 
 | |
|     def __init__(self):
 | |
|         # cache recurrent_op's proto
 | |
|         if self.__proto__ is None:
 | |
|             for op_proto in get_all_op_protos():
 | |
|                 if op_proto.type == self.type:
 | |
|                     self.__proto__ = op_proto
 | |
| 
 | |
|     def __call__(self, *args, **kwargs):
 | |
|         if self.type not in args and "type" not in kwargs:
 | |
|             kwargs["type"] = self.type
 | |
|         # create proto
 | |
|         create_method = OpDescCreationMethod(self.__proto__)
 | |
|         proto = create_method(*args, **kwargs)
 | |
|         # create condop
 | |
|         return core.CondOp.create(proto.SerializeToString())
 | |
| 
 | |
| 
 | |
| Operator = OperatorFactory()  # The default global factory
 | |
| RecurrentOp = __RecurrentOp__()
 | |
| DynamicRecurrentOp = __DynamicRecurrentOp__()
 | |
| CondOp = __CondOp__()
 |