You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/hapi/model.py

2006 lines
79 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import inspect
import os
import pickle
import numpy as np
import six
import warnings
import time
import socket
import contextlib
from collections import Iterable
import paddle
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import in_dygraph_mode, Variable, ParamBase, _current_expected_place
from paddle.fluid.framework import in_dygraph_mode, Variable
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, FunctionSpec
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers import collective
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
from paddle.fluid.incubate.fleet.base import role_maker
from paddle.io import DataLoader, Dataset, DistributedBatchSampler
from paddle.fluid.executor import scope_guard, Executor
from paddle.fluid.dygraph.layers import Layer
from paddle.metric import Metric
from paddle.static import InputSpec as Input
from .callbacks import config_callbacks
from .model_summary import summary
__all__ = ['Model', ]
_parallel_context_initialized = False
def to_list(value):
if value is None:
return value
if isinstance(value, (list, tuple)):
return list(value)
return [value]
def to_numpy(var):
assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
if isinstance(var, fluid.core.VarBase):
return var.numpy()
t = global_scope().find_var(var.name).get_tensor()
return np.array(t)
def flatten_list(l):
assert isinstance(l, list), "not a list"
outl = []
splits = []
for sl in l:
assert isinstance(sl, list), "sub content not a list"
splits.append(len(sl))
outl += sl
return outl, splits
def restore_flatten_list(l, splits):
outl = []
for split in splits:
assert len(l) >= split, "list length invalid"
sl, l = l[:split], l[split:]
outl.append(sl)
return outl
def extract_args(func):
if hasattr(inspect, 'getfullargspec'):
return inspect.getfullargspec(func)[0]
else:
return inspect.getargspec(func)[0]
def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
return collective._c_allgather(
x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream)
def wait_server_ready(endpoints):
assert not isinstance(endpoints, six.string_types)
while True:
all_ok = True
not_ready_endpoints = []
for ep in endpoints:
ip_port = ep.split(":")
with contextlib.closing(
socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
sock.settimeout(2)
result = sock.connect_ex((ip_port[0], int(ip_port[1])))
if result != 0:
all_ok = False
not_ready_endpoints.append(ep)
if not all_ok:
time.sleep(3)
else:
break
def init_communicator(program, rank, nranks, wait_port, current_endpoint,
endpoints):
if nranks < 2:
return
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
if rank == 0 and wait_port:
wait_server_ready(other_endpoints)
block = program.global_block()
nccl_id_var = block.create_var(
name=fluid.unique_name.generate('nccl_id'),
persistable=True,
type=fluid.core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_nccl_id',
inputs={},
outputs={'Out': nccl_id_var},
attrs={
'rank': rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints
})
block.append_op(
type='c_comm_init',
inputs={'X': nccl_id_var},
outputs={},
attrs={
'nranks': nranks,
'rank': rank,
'ring_id': 0,
})
def prepare_distributed_context(place=None):
if place is None:
place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
else fluid.CUDAPlace(0)
strategy = fluid.dygraph.parallel.ParallelStrategy()
strategy.nranks = ParallelEnv().nranks
strategy.local_rank = ParallelEnv().local_rank
strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
strategy.current_endpoint = ParallelEnv().current_endpoint
if strategy.nranks < 2:
return
global _parallel_context_initialized
if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):
def _init_context():
communicator_prog = fluid.Program()
init_communicator(communicator_prog, strategy.local_rank,
strategy.nranks, True, strategy.current_endpoint,
strategy.trainer_endpoints)
exe = fluid.Executor(place)
exe.run(communicator_prog)
if fluid.in_dygraph_mode():
fluid.disable_dygraph()
_init_context()
fluid.enable_dygraph(place)
else:
_init_context()
else:
assert ("Only support CUDAPlace for now.")
_parallel_context_initialized = True
return strategy
def _update_input_shapes(inputs):
"Get input shape list by given inputs in Model initialization."
shapes = None
if isinstance(inputs, Input):
shapes = [list(inputs.shape)]
elif isinstance(inputs, list):
shapes = [list(input.shape) for input in inputs]
elif isinstance(inputs, dict):
shapes = [list(inputs[name].shape) for name in inputs]
return shapes
class StaticGraphAdapter(object):
"""
Model traning/inference with a static graph.
"""
def __init__(self, model):
super(StaticGraphAdapter, self).__init__()
self.model = model
# with `_build_once` gone, parameters are now created in `__init__`
# so we need to keep track of the parameters already created
self._startup_prog = fluid.default_startup_program()
self._orig_prog = fluid.default_main_program()
self._label_vars = {} # label variables
self._input_vars = {} # label variables
self._endpoints = {}
self._loss_endpoint = None
self._executor = None
self._progs = {}
self._compiled_progs = {}
self._merge_count = {
'eval_total': 0,
'test_total': 0,
'eval_batch': 0,
'test_batch': 0
}
self._nranks = ParallelEnv().nranks
self._local_rank = ParallelEnv().local_rank
@property
def mode(self):
return self.model.mode
@mode.setter
def mode(self, value):
self.model.mode = value
def train_batch(self, inputs, labels=None):
assert self.model._optimizer, \
"model not ready, please call `model.prepare()` first"
self.mode = 'train'
return self._run(inputs, labels)
def eval_batch(self, inputs, labels=None):
self.mode = 'eval'
return self._run(inputs, labels)
def predict_batch(self, inputs):
self.mode = 'test'
return self._run(inputs, None)
def parameters(self, *args, **kwargs):
return self.model.network.parameters(*args, **kwargs)
def save(self, path):
def _save(state, path):
if not state:
return
state = {
k: to_numpy(v) if isinstance(v, Variable) else v
for k, v in state.items()
}
with open(path, 'wb') as f:
pickle.dump(state, f)
base = os.path.basename(path)
assert base != "", "path should be of 'dirname/filename' format"
dir_name = os.path.dirname(path)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name)
param_path = path + ".pdparams"
_save(self.model.network.state_dict(), param_path)
prog = self._progs.get('train', None)
if prog is None or self.model._optimizer is None:
return
# XXX `optimizer.state_dict()` only work in dygraph mode
optim_path = path + ".pdopt"
optim = {
p.name: p
for p in filter(is_belong_to_optimizer, prog.list_vars())
}
if not optim:
return
_save(optim, optim_path)
def load(self, param_state_pairs, optim_state):
if self._executor is None:
executor = fluid.Executor(fluid.CPUPlace())._default_executor
else:
executor = self._executor._default_executor
# restore parameter states
fluid.core._create_loaded_parameter(
[param for param, state in param_state_pairs],
global_scope(), executor)
for param, state in param_state_pairs:
self._set_var(param, state)
# restore optimizer states
# FIXME what if a different optimizer is used?
if not self.model._optimizer or not optim_state:
return
self._load_optimizer(optim_state, executor)
def _load_optimizer(self, state, executor):
prog = self._progs.get('train', None)
optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
if not optim:
return
fluid.core._create_loaded_parameter(optim, global_scope(), executor)
converted_state = dict(state)
for var in optim:
if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
# When using learning rate scheduler, dygraph would name the
# global step var as "global_step" to save, while static-graph
# would has a state var named as "@LR_DECAY_COUNTER@".
# NOTE: dygraph saved global_step is 1 larger than that in
# static-graph, since the time of global_step to increase is
# different.
state_val = (
np.array(converted_state.pop("global_step")) - 1
) if "global_step" in converted_state else converted_state.pop(
"@LR_DECAY_COUNTER@", None)
if state_val is not None:
converted_state[var.name] = state_val
elif var.name.startswith("learning_rate_"):
# When using static learning rate, static-graph would make it
# a persistable var named 'unique_name.generate("learning_rate")',
# However, dygraph wouldn't save it.
if var.name not in state:
continue
else:
# moment and other accumulators
if var.name not in converted_state:
# try to convert from dygraph name
opt_name = self.model._optimizer._name
opt_cls_name = self.model._optimizer.__class__.__name__
opt_unq_name = None
for name in self.model._optimizer._accumulators.keys():
accum_name = name if opt_name is None else name[len(
opt_name) + 1:]
for param_name, state_var in self.model._optimizer._accumulators[
name].items():
if opt_unq_name is None:
# can not infer out the exact unique(opt_name),
# thus try to extract rather than generate
for state_key in sorted(
state.keys(),
key=lambda x: len(x),
reverse=True):
prefix = param_name + "_" + (
opt_cls_name
if opt_name is None else opt_name) + "_"
if state_key.startswith(prefix):
prefix_offset = state_key[len(
prefix):].find("_") + len(prefix)
opt_unq_name = state_key[len(
param_name + "_"):prefix_offset]
# TODO: assert
# assert opt_unq_name is None
# gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
# always end with "_0" since the unique optimizer._name
dy_state_name = (param_name + "_" + opt_unq_name +
"_" + accum_name + "_0")
converted_state[
state_var.name] = converted_state.pop(
dy_state_name)
assert var.name in converted_state, \
"variable [{}] is not in optimizer state file".format(var.name)
self._set_var(var, converted_state[var.name])
def _set_var(self, var, ndarray):
t = global_scope().find_var(var.name).get_tensor()
p = t._place()
if p.is_cpu_place():
place = fluid.CPUPlace()
elif p.is_cuda_pinned_place():
place = fluid.CUDAPinnedPlace()
else:
p = fluid.core.Place()
p.set_place(t._place())
place = fluid.CUDAPlace(p.gpu_device_id())
t.set(ndarray, place)
def _run(self, inputs, labels=None):
compiled_prog = self._compiled_progs.get(self.mode, None)
assert compiled_prog, \
"Model is not ready, please call `model.prepare()` first"
inputs = to_list(inputs)
if labels is not None:
labels = to_list(labels)
assert len(inputs) == len(self._input_vars[self.mode]), \
"number of inputs" \
+ " does not match number of arguments of `forward` method"
feed = {}
input_names = [v.name for v in self._input_vars[self.mode]]
for idx, n in enumerate(input_names):
# train and test may take different arguments
if inputs[idx] is not None:
feed[n] = inputs[idx]
if labels is not None:
for idx, v in enumerate(self._label_vars[self.mode]):
feed[v.name] = labels[idx]
endpoints = self._endpoints[self.mode]
if self.mode == 'test':
fetch_list = endpoints['output']
else:
metric_list, metric_splits = flatten_list(endpoints['metric'])
fetch_list = endpoints['loss'] + metric_list
num_loss = len(endpoints['loss'])
# if fetch Variable is same as input Variable, do not fetch
# from program, get it from input directly
pruned_fetch_list = []
pruned_fetch_idx_name_map = [""] * len(fetch_list)
for i, fetch_var in enumerate(fetch_list):
if fetch_var.name in feed.keys():
pruned_fetch_idx_name_map[i] = fetch_var.name
else:
pruned_fetch_list.append(fetch_var)
rets = self._executor.run(compiled_prog,
feed=feed,
fetch_list=pruned_fetch_list,
return_numpy=False)
# restore pruned fetch_list Variable from feeds
for i, name in enumerate(pruned_fetch_idx_name_map):
if len(name) > 0:
rets.insert(i, feed[name])
# step learning rate scheduler on each batch end
if self.model._optimizer and self.mode == 'train' and \
hasattr(self.model._optimizer, '_learning_rate') and \
isinstance(self.model._optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
self.model._optimizer._learning_rate.step()
# LoDTensor cannot be fetch as numpy directly
rets = [np.array(v) for v in rets]
if self.mode == 'test':
return rets[:]
metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
metrics = []
for metric, state in zip(self.model._metrics, metric_states):
# cut off padding size
if self.mode != 'train' and self.model._test_dataloader is not None \
and isinstance(self.model._test_dataloader, DataLoader) \
and self._nranks > 1:
total_size = len(self.model._test_dataloader.dataset)
# TODO: fixme if have better way to get batch size
samples = state[0].shape[0]
current_count = self._merge_count.get(self.mode + '_total', 0)
if current_count + samples >= total_size:
state = [
s[:int(total_size - current_count), ...] for s in state
]
self._merge_count[self.mode + '_total'] = 0
self._merge_count[self.mode + '_batch'] = int(total_size -
current_count)
else:
self._merge_count[self.mode + '_total'] += samples
self._merge_count[self.mode + '_batch'] = samples
metrics.append(metric.update(*state))
if num_loss and len(metrics):
return rets[:num_loss], metrics
else:
return rets[:num_loss] if num_loss else metrics
def prepare(self):
modes = ['train', 'eval', 'test']
for mode in modes:
self._make_program(mode)
self._compile_and_initialize(self._progs[mode], mode)
def _make_program(self, mode):
prog = self._progs.get(mode, None)
if prog is not None:
return
prog = self._orig_prog.clone()
# NOTE: When defining learning rate scheduling in static-graph, ops to
# increase the global step var and calculate learning rate would be
# prepended into _orig_prog. test program maked by `_orig_prog.clone`
# also would include these ops. Thus must prune these ops in test
# program, otherwise the global step would be changed in test.
if mode != 'train':
for op in list(prog.global_block().ops):
prog.global_block()._remove_op(0)
if mode == 'train' and self.model._optimizer \
and self.model._optimizer._learning_rate_map:
# HACK workaround learning rate map issue
lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
new_lr_var = prog.global_block().vars[lr_var.name]
self.model._optimizer._learning_rate_map[prog] = new_lr_var
losses = []
metrics = []
with fluid.program_guard(prog, self._startup_prog):
inputs = self.model._inputs
labels = self.model._labels if self.model._labels else []
inputs = [k._create_feed_layer() for k in to_list(inputs)]
labels = [k._create_feed_layer() for k in to_list(labels)]
self._label_vars[mode] = labels
outputs = to_list(self.model.network.forward(*inputs))
if mode != 'test' and self.model._loss:
losses = self.model._loss(*(outputs + labels))
if self._nranks > 1 and mode != 'train':
outputs = [_all_gather(o, self._nranks) for o in outputs]
if mode != 'test':
labels = [_all_gather(l, self._nranks) for l in labels]
if mode != 'test':
for metric in self.model._metrics:
metrics.append(to_list(metric.compute(*(outputs + labels))))
if mode == 'train' and self.model._optimizer:
self._loss_endpoint = fluid.layers.sum(losses)
if self._nranks > 1:
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
dist_strategy = DistributedStrategy()
dist_strategy.mode = "collective"
dist_strategy.collective_mode = "grad_allreduce"
self.model._optimizer = fleet.distributed_optimizer(
self.model._optimizer, strategy=dist_strategy)
self.model._optimizer.minimize(self._loss_endpoint)
if mode != 'train': # clone again to put it in test mode
prog = prog.clone(for_test=True)
self._input_vars[mode] = inputs
self._progs[mode] = prog
self._endpoints[mode] = {
"output": outputs,
"loss": to_list(losses),
"metric": metrics
}
def _compile_and_initialize(self, prog, mode):
compiled_prog = self._compiled_progs.get(mode, None)
if compiled_prog is not None:
return compiled_prog
assert self.model._place is not None, \
"device is not set, please call `model.prepare()` first"
place = self.model._place
# XXX *ALL WEIGHTS* should be initialized upon model construction
# even if `forward()` may run different code path for different mode
# therefore startup program only needs to run once
if self._executor is None:
self._executor = fluid.Executor(place)
# XXX incremental initialization
uninitialized = []
for var_py in self._startup_prog.list_vars():
var = fluid.global_scope().find_var(var_py.name)
if not var_py.name.startswith('nccl_id') and var and \
var.get_tensor()._is_initialized():
continue
uninitialized.append(var_py)
if uninitialized:
startup_prog = self._startup_prog._prune(uninitialized)
self._executor.run(startup_prog)
if self._nranks < 2:
compiled_prog = fluid.CompiledProgram(prog)
else:
compiled_prog = prog
self._compiled_progs[mode] = compiled_prog
class DynamicGraphAdapter(object):
def __init__(self, model):
super(DynamicGraphAdapter, self).__init__()
self.model = model
self._nranks = ParallelEnv().nranks
self._local_rank = ParallelEnv().local_rank
self._merge_count = {
'eval_total': 0,
'test_total': 0,
'eval_batch': 0,
'test_batch': 0
}
self._input_shapes = None
if self._nranks > 1:
stradegy = fluid.dygraph.parallel.ParallelStrategy()
stradegy.nranks = ParallelEnv().nranks
stradegy.local_rank = ParallelEnv().local_rank
stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
stradegy.current_endpoint = ParallelEnv().current_endpoint
self.ddp_model = fluid.dygraph.parallel.DataParallel(
self.model.network, stradegy)
@property
def mode(self):
return self.model.mode
@mode.setter
def mode(self, value):
self.model.mode = value
# TODO multi device in dygraph mode not implemented at present time
def train_batch(self, inputs, labels=None):
assert self.model._optimizer, \
"model not ready, please call `model.prepare()` first"
self.model.network.train()
self.mode = 'train'
inputs = to_list(inputs)
self._input_shapes = _update_input_shapes(inputs)
labels = labels or []
labels = [to_variable(l) for l in to_list(labels)]
if self._nranks > 1:
outputs = self.ddp_model.forward(* [to_variable(x) for x in inputs])
else:
outputs = self.model.network.forward(
* [to_variable(x) for x in inputs])
losses = self.model._loss(*(to_list(outputs) + labels))
losses = to_list(losses)
final_loss = fluid.layers.sum(losses)
final_loss.backward()
self.model._optimizer.minimize(final_loss)
self.model.network.clear_gradients()
# step learning rate scheduler on each batch end
if self.model._optimizer and \
isinstance(self.model._optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
self.model._optimizer._learning_rate.step()
metrics = []
for metric in self.model._metrics:
metric_outs = metric.compute(*(to_list(outputs) + labels))
m = metric.update(* [to_numpy(m) for m in to_list(metric_outs)])
metrics.append(m)
return ([to_numpy(l) for l in losses], metrics) \
if len(metrics) > 0 else [to_numpy(l) for l in losses]
def eval_batch(self, inputs, labels=None):
self.model.network.eval()
self.mode = 'eval'
inputs = to_list(inputs)
self._input_shapes = _update_input_shapes(inputs)
labels = labels or []
labels = [to_variable(l) for l in to_list(labels)]
outputs = self.model.network.forward(* [to_variable(x) for x in inputs])
if self.model._loss:
losses = self.model._loss(*(to_list(outputs) + labels))
losses = to_list(losses)
if self._nranks > 1:
outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
labels = [_all_gather(l, self._nranks) for l in labels]
metrics = []
for metric in self.model._metrics:
# cut off padding value.
if self.model._test_dataloader is not None and self._nranks > 1 \
and isinstance(self.model._test_dataloader, DataLoader):
total_size = len(self.model._test_dataloader.dataset)
samples = outputs[0].shape[0]
current_count = self._merge_count.get(self.mode + '_total', 0)
if current_count + samples >= total_size:
outputs = [
o[:int(total_size - current_count)] for o in outputs
]
labels = [
l[:int(total_size - current_count)] for l in labels
]
self._merge_count[self.mode + '_total'] = 0
self._merge_count[self.mode + '_batch'] = int(total_size -
current_count)
else:
self._merge_count[self.mode + '_total'] += samples
self._merge_count[self.mode + '_batch'] = samples
metric_outs = metric.compute(*(to_list(outputs) + labels))
m = metric.update(* [to_numpy(m) for m in to_list(metric_outs)])
metrics.append(m)
if self.model._loss and len(metrics):
return [to_numpy(l) for l in losses], metrics
elif self.model._loss:
return [to_numpy(l) for l in losses]
else:
return metrics
def predict_batch(self, inputs):
self.model.network.eval()
self.mode = 'test'
inputs = [to_variable(x) for x in to_list(inputs)]
self._input_shapes = _update_input_shapes(inputs)
outputs = self.model.network.forward(*inputs)
if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
return [to_numpy(o) for o in to_list(outputs)]
def parameters(self, *args, **kwargs):
return self.model.network.parameters(*args, **kwargs)
def save(self, path):
params = self.model.network.state_dict()
fluid.save_dygraph(params, path)
if self.model._optimizer is None:
return
if self.model._optimizer.state_dict():
optim = self.model._optimizer.state_dict()
fluid.save_dygraph(optim, path)
def load(self, param_state_pairs, optim_state):
# restore parameter states
for param, state in param_state_pairs:
param.set_value(state)
# resotre optimizer states
if not self.model._optimizer or not optim_state:
return
# If optimizer performs set_state_dict when state vars haven't been created,
# which would happen when set_state_dict before minimize, the state would be
# stored in optimizer._accumulators_holder and loaded lazily.
# To contrive this when loading from static-graph saved states, extend
# state dict to include keys named accoring to dygraph naming rules.
# TODO: if len(self.model._optimizer._accumulators) > 0
converted_state = dict(optim_state)
opt_unq_name = self.model._optimizer._name
if opt_unq_name is None:
opt_unq_name = ''
opt_cls_name = self.model._optimizer.__class__.__name__
opt_name = opt_unq_name[:opt_unq_name.rfind("_")] # remove suffix idx
param_names = [param.name for param in self.model.network.parameters()]
for var_name, state_var in sorted(
optim_state.items(), key=lambda x: len(x[0]), reverse=True):
if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
# NOTE: dygraph saved global_step is 1 larger than that in
# static-graph, since the time of global_step to increase is
# different.
if var_name == "@LR_DECAY_COUNTER@":
converted_state["global_step"] = np.array(
converted_state.pop("@LR_DECAY_COUNTER@")) + 1
else:
# moment and other accumulators
# extend state dict to include promising dygraph names
for param_name in param_names:
if var_name.startswith(param_name + "_" + opt_name):
# when init optimizer with name
accum_name = var_name[len(param_name + "_" + opt_name +
"_"):]
elif var_name.startswith(param_name +
"_") and opt_name == opt_cls_name:
# when init optimizer without name
accum_name = var_name[len(param_name + "_"):]
else:
continue
# remove suffix idx
accum_name = accum_name[:accum_name.rfind("_")]
# state names always end with "_0" in dygraph because of the
# unique optimizer._name
dy_state_name = (param_name + "_" + opt_unq_name + "_" +
accum_name + "_0")
converted_state[dy_state_name] = state_var
if not hasattr(self.model._optimizer, 'set_state_dict'):
warnings.warn(
"paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
)
self.model._optimizer.set_dict(converted_state)
else:
self.model._optimizer.set_state_dict(converted_state)
class Model(object):
"""
An Model object is network with training and inference features.
Dynamic graph and static graph are supported at the same time,
switched by `paddle.disable_static()`. The usage is as follows.
But note, the switching between dynamic and static should be before
instantiating a Model. The input description, i.e, paddle.static.InputSpec,
must be required for static graph.
Args:
network (paddle.nn.Layer): The network is an instance of
paddle.nn.Layer.
inputs (InputSpec|list|dict|None): `inputs`, entry points of network,
could be a InputSpec instance, or lits of InputSpec instances,
or dict ({name: InputSpec}), and it couldn't be None in static
graph.
labels (InputSpec|list|None): `labels`, entry points of network,
could be a InputSpec instnace or lits of InputSpec instances,
or None. For static graph, if labels is required in loss,
labels must be set. Otherwise, it could be None.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import paddle.vision.transforms as T
from paddle.static import InputSpec
device = paddle.set_device('cpu') # or 'gpu'
net = nn.Sequential(
nn.Flatten(1),
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10))
# inputs and labels are not required for dynamic graph.
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(net, input, label)
optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameters=model.parameters())
model.prepare(optim,
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
model.fit(data, epochs=2, batch_size=32, verbose=1)
"""
def __init__(self, network, inputs=None, labels=None):
self.mode = 'train'
self.network = network
self._inputs = None
self._labels = None
self._loss = None
self._loss_weights = None
self._optimizer = None
self._input_shapes = None
self._is_shape_inferred = False
self._test_dataloader = None
if not in_dygraph_mode():
if not isinstance(inputs, (list, dict, Input)):
raise TypeError(
"'inputs' must be list or dict, and couldn't be None.")
elif inputs:
self._input_shapes = _update_input_shapes(inputs)
self._inputs = self._verify_spec(inputs, is_input=True)
self._labels = self._verify_spec(labels)
# init backend
if fluid.in_dygraph_mode():
self._adapter = DynamicGraphAdapter(self)
else:
self._adapter = StaticGraphAdapter(self)
def train_batch(self, inputs, labels=None):
"""
Run one training step on a batch of data.
Args:
inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
be a numpy array or paddle.Tensor, or a list of arrays or
tensors (in case the model has multiple inputs).
labels (numpy.ndarray|Tensor|list): Batch of labels. It could be
a numpy array or paddle.Tensor, or a list of arrays or tensors
(in case the model has multiple labels). If has no labels,
set None. Default is None.
Returns:
A list of scalar training loss if the model has no metrics,
or a tuple (list of scalar loss, list of metrics) if the model
set metrics.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
from paddle.static import InputSpec
device = paddle.set_device('cpu') # or 'gpu'
net = nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10))
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(net, input, label)
optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameters=model.parameters())
model.prepare(optim, paddle.nn.CrossEntropyLoss())
data = np.random.random(size=(4,784)).astype(np.float32)
label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
loss = model.train_batch([data], [label])
print(loss)
"""
loss = self._adapter.train_batch(inputs, labels)
if fluid.in_dygraph_mode() and self._input_shapes is None:
self._update_inputs()
return loss
def eval_batch(self, inputs, labels=None):
"""
Run one evaluating step on a batch of data.
Args:
inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
be a numpy array or paddle.Tensor, or a list of arrays or
tensors (in case the model has multiple inputs).
labels (numpy.ndarray|Tensor|list): Batch of labels. It could be
a numpy array or paddle.Tensor, or a list of arrays or tensors
(in case the model has multiple labels). If has no labels,
set None. Default is None.
Returns:
A list of scalar testing loss if the model has no metrics,
or a tuple (list of scalar loss, list of metrics) if the model
set metrics.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
from paddle.static import InputSpec
device = paddle.set_device('cpu') # or 'gpu'
net = nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10))
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(net, input, label)
optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameters=model.parameters())
model.prepare(optim,
paddle.nn.CrossEntropyLoss())
data = np.random.random(size=(4,784)).astype(np.float32)
label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
loss = model.eval_batch([data], [label])
print(loss)
"""
loss = self._adapter.eval_batch(inputs, labels)
if fluid.in_dygraph_mode() and self._input_shapes is None:
self._update_inputs()
return loss
def predict_batch(self, inputs):
"""
Run one predicting step on a batch of data.
Args:
inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
be a numpy array or paddle.Tensor, or a list of arrays or
tensors (in case the model has multiple inputs).
Returns:
A list of numpy.ndarray of predictions, that is the outputs
of Model forward.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
from paddle.static import InputSpec
device = paddle.set_device('cpu') # or 'gpu'
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
net = nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10),
nn.Softmax())
model = paddle.Model(net, input, label)
model.prepare()
data = np.random.random(size=(4,784)).astype(np.float32)
out = model.predict_batch([data])
print(out)
"""
loss = self._adapter.predict_batch(inputs)
if fluid.in_dygraph_mode() and self._input_shapes is None:
self._update_inputs()
return loss
def save(self, path, training=True):
"""
This function saves parameters, optimizer information or model and
paramters only for inference to path. It depends on the parameter
`training`.
If `training` is set to True, the parameters saved contain all
the trainable Variable, will save to a file with suffix ".pdparams".
The optimizer information contains all the variable used by optimizer.
For Adam optimizer, contains beta1, beta2, momentum etc. All the
information will save to a file with suffix ".pdopt". (If the optimizer
have no variable need to save (like SGD), the fill will not generated).
This function will silently overwrite existing file at the target location.
If `training` is set to False, only inference model will be saved.
Args:
path (str): The file prefix to save model. The format is
'dirname/file_prefix' or 'file_prefix'. if empty str. A exception
will be raised.
training (bool, optional): Whether to save for training. If not, save
for inference only. Default: True.
Returns:
None
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import paddle.vision.transforms as T
from paddle.static import InputSpec
class Mnist(nn.Layer):
def __init__(self):
super(Mnist, self).__init__()
self.net = nn.Sequential(
nn.Flatten(1),
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10),
nn.Softmax())
def forward(self, x):
return self.net(x)
dynamic = True # False
device = paddle.set_device('cpu')
# if use static graph, do not set
paddle.disable_static(device) if dynamic else None
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(Mnist(), input, label)
optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameters=model.parameters())
model.prepare(optim, paddle.nn.CrossEntropyLoss())
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
model.fit(data, epochs=1, batch_size=32, verbose=0)
model.save('checkpoint/test') # save for training
model.save('inference_model', False) # save for inference
"""
if ParallelEnv().local_rank == 0:
if not training:
self._save_inference_model(path)
else:
self._adapter.save(path)
def load(self, path, skip_mismatch=False, reset_optimizer=False):
"""
Load from files storing the model states and optimizer states. The file
for optimizer states is not necessary if no need to restore the optimizer.
NOTE: parameters are retrieved out from the file storing model states
accoring to their structured names.
For fine-tuning or transfer-learning models where some of the layers have
changed, keep parameters needed to restore have same structured names in
the pre-trained model and fine-tuning model.
Args:
path (str): The prefix of files storing the model states and
optimizer states. The files would be `path.pdparams` and
`path.pdopt` separately, and the latter is not necessary
when no need to restore.
skip_mismatch (bool): Whether to skip the loading of mismatch
parameter or raise an error when mismatch happens (not found
the parameter in file storing model states of or receives a
mismatch shape).
reset_optimizer (bool): If True, ignore the providing file storing
optimizer states and initialize optimizer states from scratch.
Otherwise, restore optimizer states from `path.pdopt` if
a optimizer has been set to the model. Default False.
Returns:
None
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
from paddle.static import InputSpec
device = paddle.set_device('cpu')
input = InputSpec([None, 784], 'float32', 'x')
model = paddle.Model(nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10),
nn.Softmax()), input)
model.save('checkpoint/test')
model.load('checkpoint/test')
"""
def _load_state_from_path(path):
if not os.path.exists(path):
return
with open(path, 'rb') as f:
return pickle.load(f) if six.PY2 else pickle.load(
f, encoding='latin1')
def _check_match(key, param):
state = param_state.get(key, None)
if state is None:
raise ValueError(
"{} is not found in the providing file.".format(key))
if list(state.shape) != list(param.shape):
raise ValueError(
"{} receives a shape {}, but the expected shape is {}.".
format(key, list(state.shape), list(param.shape)))
return param, state
def _strip_postfix(path):
path, ext = os.path.splitext(path)
assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
"Unknown postfix {} from weights".format(ext)
return path
path = _strip_postfix(path)
param_state = _load_state_from_path(path + ".pdparams")
assert param_state, "Failed to load parameters, please check path."
matched_param_state = []
for key, param in self.network.state_dict().items():
try:
match_res = _check_match(key, param)
except ValueError as err:
if skip_mismatch:
warnings.warn(
("Skip loading for {}. ".format(key) + str(err)))
# reset optimizer when mismatch happens
reset_optimizer = True
else:
raise err
matched_param_state.append(match_res)
optim_state = None if reset_optimizer else _load_state_from_path(
path + ".pdopt")
return self._adapter.load(matched_param_state, optim_state)
def parameters(self, *args, **kwargs):
"""
Returns a list of parameters of the model.
Returns:
A list of Parameter in static graph.
A list of ParamBase in dynamic graph.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
from paddle.static import InputSpec
input = InputSpec([None, 784], 'float32', 'x')
model = paddle.Model(nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10)), input)
params = model.parameters()
"""
return self._adapter.parameters()
def prepare(self, optimizer=None, loss=None, metrics=None):
"""
Configures the model before runing.
Args:
optimizer (Optimizer|None): Optimizer must be set in training
and should be a Optimizer instance. It can be None in eval
and test mode.
loss (Loss|callable function|None): Loss function can
be a `paddle.nn.Layer` instance or any callable function
taken the predicted values and ground truth values as input.
It can be None when there is no loss.
metrics (Metric|list of Metric|None): If metrics is set, all
metrics will be calculated and output in train/eval mode.
Returns:
None
"""
self._place = _get_device()
if isinstance(self._place, fluid.CUDAPlace):
global _parallel_context_initialized
if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
if fluid.in_dygraph_mode():
main_prog_seed = fluid.default_main_program().random_seed
startup_prog_seed = fluid.default_startup_program(
).random_seed
fluid.disable_dygraph()
paddle.disable_static(self._place)
# enable_dygraph would create and switch to a new program,
# thus also copy seed to the new program
fluid.default_main_program().random_seed = main_prog_seed
fluid.default_startup_program(
).random_seed = startup_prog_seed
fluid.dygraph.parallel.prepare_context()
else:
prepare_distributed_context(self._place)
_parallel_context_initialized = True
self._optimizer = optimizer
if loss is not None:
if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
raise TypeError("'loss' must be sub classes of " \
"`paddle.nn.Layer` or any callable function.")
self._loss = loss
metrics = metrics or []
for metric in to_list(metrics):
assert isinstance(metric, Metric), \
"{} is not sub class of Metric".format(
metric.__class__.__name__)
self._metrics = to_list(metrics)
if not in_dygraph_mode():
self._adapter.prepare()
def fit(
self,
train_data=None,
eval_data=None,
batch_size=1,
epochs=1,
eval_freq=1,
log_freq=10,
save_dir=None,
save_freq=1,
verbose=2,
drop_last=False,
shuffle=True,
num_workers=0,
callbacks=None, ):
"""
Trains the model for a fixed number of epochs. If `eval_data` is set,
evaluation will be done at the end of each epoch.
Args:
train_data (Dataset|DataLoader): An iterable data loader is used for
train. An instance of paddle paddle.io.Dataset or
paddle.io.Dataloader is recomended. Default: None.
eval_data (Dataset|DataLoader): An iterable data loader is used for
evaluation at the end of epoch. If None, will not do evaluation.
An instance of paddle.io.Dataset or paddle.io.Dataloader
is recomended. Default: None.
batch_size (int): Integer number. The batch size of train_data
and eval_data. When train_data and eval_data are both the
instance of Dataloader, this parameter will be ignored.
Default: 1.
epochs (int): Integer number. The number of epochs to train
the model. Default: 1.
eval_freq (int): The frequency, in number of epochs, an evalutation
is performed. Default: 1.
log_freq (int): The frequency, in number of steps, the training logs
are printed. Default: 10.
save_dir(str|None): The directory to save checkpoint during training.
If None, will not save checkpoint. Default: None.
save_freq (int): The frequency, in number of epochs, to save
checkpoint. Default: 1.
verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1 = progress bar, 2 = one line per epoch. Default: 2.
drop_last (bool): Whether drop the last incomplete batch of
train_data when dataset size is not divisible by the batch size.
When train_data is an instance of Dataloader, this parameter
will be ignored. Default: False.
shuffle (bool): Whther to shuffle train_data. When train_data is
an instance of Dataloader, this parameter will be ignored.
Default: True.
num_workers (int): The number of subprocess to load data, 0 for no
subprocess used and loading data in main process.
When train_data and eval_data are both the instance of
Dataloader, this parameter will be ignored. Default: 0.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted. Default: None.
Returns:
None
Examples:
1. An example use Dataset and set btch size, shuffle in fit.
How to make a batch is done internally.
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
dynamic = True
device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device) if dynamic else None
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(
paddle.vision.models.LeNet(),
input, label)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
optim,
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy(topk=(1, 2)))
model.fit(train_dataset,
val_dataset,
epochs=2,
batch_size=64,
save_dir='mnist_checkpoint')
2. An example use DataLoader, batch size and shuffle is set in
DataLoader.
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
dynamic = True
device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device) if dynamic else None
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
train_loader = paddle.io.DataLoader(train_dataset,
places=device, batch_size=64)
val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
val_loader = paddle.io.DataLoader(val_dataset,
places=device, batch_size=64)
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(
paddle.vision.models.LeNet(), input, label)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
optim,
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy(topk=(1, 2)))
model.fit(train_loader,
val_loader,
epochs=2,
save_dir='mnist_checkpoint')
"""
assert train_data is not None, \
"train_data must be given!"
if isinstance(train_data, Dataset):
train_sampler = DistributedBatchSampler(
train_data,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last)
train_loader = DataLoader(
train_data,
batch_sampler=train_sampler,
places=self._place,
num_workers=num_workers,
return_list=True)
else:
train_loader = train_data
if eval_data is not None and isinstance(eval_data, Dataset):
eval_sampler = DistributedBatchSampler(
eval_data, batch_size=batch_size)
eval_loader = DataLoader(
eval_data,
batch_sampler=eval_sampler,
places=self._place,
num_workers=num_workers,
return_list=True)
elif eval_data is not None:
eval_loader = eval_data
else:
eval_loader = None
do_eval = eval_loader is not None
self._test_dataloader = eval_loader
steps = self._len_data_loader(train_loader)
cbks = config_callbacks(
callbacks,
model=self,
epochs=epochs,
steps=steps,
log_freq=log_freq,
save_freq=save_freq,
save_dir=save_dir,
verbose=verbose,
metrics=self._metrics_name(), )
cbks.on_begin('train')
for epoch in range(epochs):
cbks.on_epoch_begin(epoch)
logs = self._run_one_epoch(train_loader, cbks, 'train')
cbks.on_epoch_end(epoch, logs)
if do_eval and epoch % eval_freq == 0:
eval_steps = self._len_data_loader(eval_loader)
cbks.on_begin('eval', {
'steps': eval_steps,
'metrics': self._metrics_name()
})
eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')
cbks.on_end('eval', eval_logs)
cbks.on_end('train', logs)
self._test_dataloader = None
def evaluate(
self,
eval_data,
batch_size=1,
log_freq=10,
verbose=2,
num_workers=0,
callbacks=None, ):
"""
Evaluate the loss and metrics of the model on input dataset.
Args:
eval_data (Dataset|DataLoader): An iterable data loader is used for
evaluation. An instance of paddle.io.Dataset or
paddle.io.Dataloader is recomended.
batch_size (int): Integer number. The batch size of train_data
and eval_data. When eval_data is the instance of Dataloader,
this argument will be ignored. Default: 1.
log_freq (int): The frequency, in number of steps, the eval logs
are printed. Default: 10.
verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1 = progress bar, 2 = one line per epoch. Default: 2.
num_workers (int): The number of subprocess to load data,
0 for no subprocess used and loading data in main process. When
train_data and eval_data are both the instance of Dataloader,
this parameter will be ignored. Default: 0.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted. Default: None.
Returns:
dict: Result of metric. The key is the names of Metric,
value is a scalar or numpy.array.
Examples:
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
# declarative mode
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(paddle.vision.models.LeNet(), input, label)
model.prepare(metrics=paddle.metric.Accuracy())
result = model.evaluate(val_dataset, batch_size=64)
print(result)
# imperative mode
paddle.disable_static()
model = paddle.Model(paddle.vision.models.LeNet(), input, label)
model.prepare(metrics=paddle.metric.Accuracy())
result = model.evaluate(val_dataset, batch_size=64)
print(result)
"""
if eval_data is not None and isinstance(eval_data, Dataset):
eval_sampler = DistributedBatchSampler(
eval_data, batch_size=batch_size)
eval_loader = DataLoader(
eval_data,
batch_sampler=eval_sampler,
places=self._place,
num_workers=num_workers,
return_list=True)
else:
eval_loader = eval_data
self._test_dataloader = eval_loader
cbks = config_callbacks(
callbacks,
model=self,
log_freq=log_freq,
verbose=verbose,
metrics=self._metrics_name(), )
eval_steps = self._len_data_loader(eval_loader)
cbks.on_begin('eval',
{'steps': eval_steps,
'metrics': self._metrics_name()})
logs = self._run_one_epoch(eval_loader, cbks, 'eval')
cbks.on_end('eval', logs)
self._test_dataloader = None
eval_result = {}
for k in self._metrics_name():
eval_result[k] = logs[k]
return eval_result
def predict(self,
test_data,
batch_size=1,
num_workers=0,
stack_outputs=False,
callbacks=None):
"""
Compute the output predictions on testing data.
Args:
test_data (Dataset|DataLoader): An iterable data loader is used for
predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
is recomended.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
argument will be ignored. Default: 1.
num_workers (int): The number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this argument will be ignored. Default: 0.
stack_outputs (bool): Whether stack output field like a batch, as for an output
filed of a sample is in shape [X, Y], test_data contains N samples, predict
output field will be in shape [N, X, Y] if stack_output is True, and will
be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs
is False. stack_outputs as False is used for LoDTensor output situation,
it is recommended set as True if outputs contains no LoDTensor. Default: False.
callbacks(Callback): A Callback instance, default None.
Returns:
list: output of models.
Examples:
.. code-block:: python
import numpy as np
import paddle
from paddle.static import InputSpec
class MnistDataset(paddle.vision.datasets.MNIST):
def __init__(self, mode, return_label=True):
super(MnistDataset, self).__init__(mode=mode)
self.return_label = return_label
def __getitem__(self, idx):
img = np.reshape(self.images[idx], [1, 28, 28])
if self.return_label:
return img, np.array(self.labels[idx]).astype('int64')
return img,
def __len__(self):
return len(self.images)
test_dataset = MnistDataset(mode='test', return_label=False)
# imperative mode
input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
model = paddle.Model(paddle.vision.models.LeNet(), input)
model.prepare()
result = model.predict(test_dataset, batch_size=64)
print(len(result[0]), result[0][0].shape)
# declarative mode
device = paddle.set_device('cpu')
paddle.enable_static()
input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
model = paddle.Model(paddle.vision.models.LeNet(), input)
model.prepare()
result = model.predict(test_dataset, batch_size=64)
print(len(result[0]), result[0][0].shape)
"""
if test_data is not None and isinstance(test_data, Dataset):
test_sampler = DistributedBatchSampler(
test_data, batch_size=batch_size)
test_loader = DataLoader(
test_data,
batch_sampler=test_sampler,
places=self._place,
num_workers=num_workers,
return_list=True)
else:
test_loader = test_data
self._test_dataloader = test_loader
cbks = config_callbacks(callbacks, model=self, verbose=1)
test_steps = self._len_data_loader(test_loader)
logs = {'steps': test_steps}
cbks.on_begin('test', logs)
outputs = []
logs, outputs = self._run_one_epoch(test_loader, cbks, 'test')
outputs = list(zip(*outputs))
# NOTE: for lod tensor output, we should not stack outputs
# for stacking may lose its detail info
if stack_outputs:
outputs = [np.vstack(outs) for outs in outputs]
self._test_dataloader = None
cbks.on_end('test', logs)
return outputs
def _save_inference_model(self,
save_dir,
model_filename=None,
params_filename=None,
model_only=False):
"""
Save inference model can be in static or dynamic mode.
Args:
save_dir (str): The directory path to save the inference model.
model_filename (str|None): The name of file to save the inference
model itself. If is set None, a default filename
:code:`__model__` will be used.
params_filename (str|None): The name of file to save all related
parameters. If it is set None, parameters will be saved
in separate files .
model_only (bool): If True, It will save inference model only,
and do not save parameters. Default: False.
Returns:
list: The fetch variables' name list
"""
def get_inout_spec(all_vars, return_name=False):
result_list = []
valid_vars = [var for var in all_vars if isinstance(var, Variable)]
result_list = valid_vars
if return_name:
result_list = [var.name for var in result_list]
return result_list
if fluid.in_dygraph_mode():
with fluid.framework._dygraph_guard(None):
layer = self.network
if self._input_shapes is None: # No provided or inferred
raise RuntimeError(
"Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
)
if self._is_shape_inferred:
warnings.warn(
"'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
% self._input_shapes)
layer.forward = paddle.jit.to_static(
layer.forward, input_spec=self._inputs)
# 1. input check
prog_translator = ProgramTranslator()
if not prog_translator.enable_to_static:
raise RuntimeError(
"save_inference_model doesn't work when setting ProgramTranslator.enable to False."
)
if not isinstance(layer, Layer):
raise TypeError(
"The input layer should be 'Layer', but received layer type is %s."
% type(layer))
# 2. get program of declarative Layer.forward
concrete_program = layer.forward.concrete_program
# NOTE: we maintain the mapping of variable name to
# structured name, the buffer variable (non-persistable)
# saved to inference program may not need by dygraph Layer,
# we only record the state_dict variable's structured name
state_names_dict = dict()
for structured_name, var in layer.state_dict().items():
state_names_dict[var.name] = structured_name
# 3. share parameters from Layer to scope & record var info
scope = core.Scope()
extra_var_info = dict()
for param_or_buffer in concrete_program.parameters:
# share to scope
param_or_buffer_tensor = scope.var(
param_or_buffer.name).get_tensor()
src_tensor = param_or_buffer.value().get_tensor()
param_or_buffer_tensor._share_data_with(src_tensor)
# record var info
extra_info_dict = dict()
if param_or_buffer.name in state_names_dict:
extra_info_dict['structured_name'] = state_names_dict[
param_or_buffer.name]
extra_info_dict[
'stop_gradient'] = param_or_buffer.stop_gradient
if isinstance(param_or_buffer, ParamBase):
extra_info_dict['trainable'] = param_or_buffer.trainable
extra_var_info[param_or_buffer.name] = extra_info_dict
# 4. build input & output spec
input_var_names = get_inout_spec(concrete_program.inputs, True)
output_vars = get_inout_spec(concrete_program.outputs)
# 5. save inference model
with scope_guard(scope):
return fluid.io.save_inference_model(
dirname=save_dir,
feeded_var_names=input_var_names,
target_vars=output_vars,
executor=Executor(_current_expected_place()),
main_program=concrete_program.main_program.clone(),
model_filename=model_filename,
params_filename=params_filename,
program_only=model_only)
else:
prog = self._adapter._progs.get('test', None)
assert prog, \
"Model is not ready, please call `model.prepare()` first"
infer_prog = prog.clone(for_test=True)
input_names = [v.name for v in self._adapter._input_vars['test']]
endpoints = self._adapter._endpoints['test']['output']
return fluid.io.save_inference_model(
save_dir,
input_names,
endpoints,
self._adapter._executor,
main_program=infer_prog,
model_filename=model_filename,
params_filename=params_filename,
program_only=model_only)
def _run_one_epoch(self, data_loader, callbacks, mode, logs={}):
outputs = []
for step, data in enumerate(data_loader):
# data might come from different types of data_loader and have
# different format, as following:
# 1. DataLoader in static graph:
# [[input1, input2, ..., label1, lable2, ...]]
# 2. DataLoader in dygraph
# [input1, input2, ..., label1, lable2, ...]
# 3. custumed iterator yield concated inputs and labels:
# [input1, input2, ..., label1, lable2, ...]
# 4. custumed iterator yield seperated inputs and labels:
# ([input1, input2, ...], [label1, lable2, ...])
# To handle all of these, flatten (nested) list to list.
data = flatten(data)
# LoDTensor.shape is callable, where LoDTensor comes from
# DataLoader in static graph
batch_size = data[0].shape()[0] if callable(data[
0].shape) else data[0].shape[0]
callbacks.on_batch_begin(mode, step, logs)
if mode != 'test':
outs = getattr(self, mode + '_batch')(data[:len(self._inputs)],
data[len(self._inputs):])
if self._metrics and self._loss:
metrics = [[l[0] for l in outs[0]]]
elif self._loss:
metrics = [[l[0] for l in outs]]
else:
metrics = []
# metrics
for metric in self._metrics:
res = metric.accumulate()
metrics.extend(to_list(res))
assert len(self._metrics_name()) == len(metrics)
for k, v in zip(self._metrics_name(), metrics):
logs[k] = v
else:
if self._inputs is not None:
outs = self.predict_batch(data[:len(self._inputs)])
else:
outs = self.predict_batch(data)
outputs.append(outs)
logs['step'] = step
if mode == 'train' or self._adapter._merge_count.get(
mode + '_batch', 0) <= 0:
logs['batch_size'] = batch_size * ParallelEnv().nranks
else:
logs['batch_size'] = self._adapter._merge_count[mode + '_batch']
callbacks.on_batch_end(mode, step, logs)
self._reset_metrics()
if mode == 'test':
return logs, outputs
return logs
def summary(self, input_size=None, dtype=None):
"""Prints a string summary of the network.
Args:
input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
if not set, input_size will get from ``self._inputs`` if network only have
one input, input_size can be tuple or InputSpec. if model have multiple
input, input_size must be a list which contain every input's shape.
Default: None.
dtypes (str, optional): if dtypes is None, 'float32' will be used, Default: None.
Returns:
Dict: a summary of the network including total params and total trainable params.
Examples:
.. code-block:: python
import paddle
from paddle.static import InputSpec
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(paddle.vision.LeNet(),
input, label)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
optim,
paddle.nn.CrossEntropyLoss())
params_info = model.summary()
print(params_info)
"""
assert (input_size is not None or self._inputs is not None
), "'input_size' or 'self._input' must be set"
if input_size is not None:
_input_size = input_size
else:
_input_size = self._inputs
return summary(self.network, _input_size, dtype)
def _verify_spec(self, specs, shapes=None, is_input=False):
out_specs = []
if specs is None:
# Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
# to generate `Input`. But how can we know the actual shape of each input tensor?
if is_input:
arg_names = extract_args(self.network.forward)[1:]
if shapes is not None and fluid.in_dygraph_mode():
out_specs = [
Input(
name=n, shape=shapes[i])
for i, n in enumerate(arg_names)
]
else:
out_specs = [Input(name=n, shape=[None]) for n in arg_names]
else:
out_specs = to_list(specs)
elif isinstance(specs, dict):
assert is_input == False
out_specs = [specs[n] \
for n in extract_args(self.network.forward) if n != 'self']
else:
out_specs = to_list(specs)
# Note: checks each element has specificed `name`.
if out_specs is not None:
for i, spec in enumerate(out_specs):
assert isinstance(spec, Input)
if spec.name is None:
raise ValueError(
"Requires Input[{}].name != None, but receive `None` with {}."
.format(i, spec))
return out_specs
def _reset_metrics(self):
for metric in self._metrics:
metric.reset()
def _metrics_name(self):
metrics_name = ['loss'] if self._loss else []
for m in self._metrics:
metrics_name.extend(to_list(m.name()))
return metrics_name
def _len_data_loader(self, data_loader):
try:
steps = len(data_loader)
except Exception:
steps = None
return steps
def _update_inputs(self):
"Update self._inputs according to given inputs."
self._input_shapes = self._adapter._input_shapes
self._is_shape_inferred = True
self._inputs = self._verify_spec(None, self._input_shapes, True)