45 lines
1.6 KiB
45 lines
1.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "FunctionTest.h"
|
|
|
|
namespace paddle {
|
|
|
|
TEST(Pad, real) {
|
|
for (size_t numSamples : {1, 4, 8, 16}) {
|
|
for (size_t channels : {1, 4, 8, 16}) {
|
|
for (size_t imgSizeH : {1, 4, 8, 16}) {
|
|
for (size_t imgSizeW : {1, 4, 8, 16}) {
|
|
VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
|
|
<< " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
|
|
for (bool test_grad : {true, false}) {
|
|
CpuGpuFuncCompare compare(test_grad ? "NHWC2NCHW" : "NCHW2NHWC",
|
|
FuncConfig());
|
|
TensorShape inDims{numSamples, channels, imgSizeH, imgSizeW};
|
|
TensorShape outDims{numSamples, imgSizeH, imgSizeW, channels};
|
|
compare.addInputs(
|
|
BufferArg(VALUE_TYPE_FLOAT, test_grad ? outDims : inDims));
|
|
compare.addOutputs(BufferArg(
|
|
VALUE_TYPE_FLOAT, test_grad ? inDims : outDims, ASSIGN_TO));
|
|
compare.run();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|