You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_parallel_executor.py

84 lines
3.2 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
import paddle.v2 as paddle
import paddle.v2.dataset.mnist as mnist
import numpy
class ParallelExecutor(unittest.TestCase):
def setUp(self):
# Convert mnist to recordio file
with fluid.program_guard(fluid.Program(), fluid.Program()):
reader = paddle.batch(mnist.train(), batch_size=32)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=[784]),
fluid.layers.data(
name='label', shape=[1], dtype='int64'),
],
place=fluid.CPUPlace())
fluid.recordio_writer.convert_reader_to_recordio_file(
'./mnist.recordio', reader, feeder)
def test_main(self):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
reader = fluid.layers.open_recordio_file(
filename='./mnist.recordio',
shapes=[[-1, 784], [-1, 1]],
lod_levels=[0, 0],
dtypes=['float32', 'int64'])
img, label = fluid.layers.read_file(reader)
hidden = fluid.layers.fc(
img,
size=200,
act='tanh',
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=1.0)))
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.mean(loss)
adam = fluid.optimizer.Adam()
adam.minimize(loss)
act_places = []
for each in [fluid.CUDAPlace(0), fluid.CUDAPlace(1)]:
p = fluid.core.Place()
p.set_place(each)
act_places.append(p)
exe = fluid.core.ParallelExecutor(
act_places,
set([p.name for p in main.global_block().iter_parameters()]),
startup.desc, main.desc, loss.name, fluid.global_scope())
exe.run([loss.name], 'fetched_var')
first_loss = numpy.array(fluid.global_scope().find_var('fetched_var')
.get_lod_tensor_array()[0])
print first_loss
for i in xrange(10):
exe.run([], 'fetched_var')
exe.run([loss.name], 'fetched_var')
last_loss = numpy.array(fluid.global_scope().find_var('fetched_var')
.get_lod_tensor_array()[0])
print first_loss, last_loss
self.assertGreater(first_loss[0], last_loss[0])