You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/imperative/learning_rate_scheduler.py

69 lines
1.9 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from .. import layers
from .. import unique_name
__all__ = [
'ExponentialDecay', 'NaturalExpDecay', 'InverseTimeDecay',
'PolynomialDecay', 'PiecewiseDecay', 'NoamDecay'
]
class LearningRateDecay(object):
"""
Base class of learning rate decay
"""
def __init__(self, step, dtype='float32'):
self.step = step
self.dtype = dtype
def __call__(self):
lr = self.step()
if isinstance(lr, float):
lr = self._create_lr_var(lr)
self.step += 1
return lr
def create_lr_var(lr):
lr = layers.create_global_var(
name=unique_name.generate("learning_rate"),
shape=[1],
value=float(lr),
dtype=self.dtype,
persistable=True)
def step(self):
raise NotImplementedError()
class PiecewiseDecay(object):
def __init__(self, boundaries, values, step, dtype='float32'):
super(PiecewiseDecay, self).__init__(step, dtype)
self.boundaries = boundaries
self.values = values
self.vars = []
for value in values:
self.vars.append(self.create_lr_var(value))
def step(self):
for i in range(len(boundaries)):
if self.step <= boundaries[i]:
return self.vars[i]
return self.vars[len(values) - 1]