You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
355 lines
14 KiB
355 lines
14 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/pybind/imperative.h"
|
|
|
|
#include <Python.h>
|
|
#include <pybind11/chrono.h>
|
|
#include <pybind11/complex.h>
|
|
#include <pybind11/functional.h>
|
|
#include <pybind11/stl.h>
|
|
#include <memory>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
|
|
#include "paddle/fluid/framework/block_desc.h"
|
|
#include "paddle/fluid/imperative/layer.h"
|
|
#include "paddle/fluid/imperative/profiler.h"
|
|
#include "paddle/fluid/imperative/tracer.h"
|
|
#include "paddle/fluid/imperative/type_defs.h"
|
|
|
|
#include "paddle/fluid/pybind/pybind_boost_headers.h"
|
|
|
|
namespace paddle {
|
|
namespace pybind {
|
|
|
|
namespace py = ::pybind11;
|
|
|
|
class Layer : public imperative::Layer {
|
|
public:
|
|
using imperative::Layer::Layer; // Inherit constructors
|
|
|
|
std::vector<std::shared_ptr<imperative::VarBase>> Forward(
|
|
const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
|
|
override {
|
|
PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
|
|
Forward,
|
|
inputs); // NOLINT
|
|
}
|
|
};
|
|
|
|
class PYBIND11_HIDDEN PyOpBase : public imperative::OpBase {
|
|
public:
|
|
using imperative::OpBase::OpBase; // Inherit constructors
|
|
|
|
PyOpBase(const std::string &name) : OpBase(name) {}
|
|
};
|
|
|
|
// Function like obj.attr_name in Python.
|
|
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
|
|
// NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
|
|
// is not inside obj, but it would also set the error flag of Python.
|
|
// If the error flag is set in C++, C++ code would not raise Exception,
|
|
// but Python would raise Exception once C++ call ends.
|
|
// To avoid unexpected Exception raised in Python, we check whether
|
|
// attribute exists before calling PyObject_GetAttrString.
|
|
//
|
|
// Caution: PyObject_GetAttrString would increase reference count of PyObject.
|
|
// Developer should call Py_DECREF manually after the attribute is not used.
|
|
if (PyObject_HasAttrString(obj, attr_name)) {
|
|
return PyObject_GetAttrString(obj, attr_name);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static T PyObjectCast(PyObject *obj) {
|
|
try {
|
|
return py::cast<T>(py::handle(obj));
|
|
} catch (py::cast_error &) {
|
|
PADDLE_THROW("Python object is not type of %s", typeid(T).name());
|
|
}
|
|
}
|
|
|
|
// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
|
|
// Unlike py::object, py::handle does not change reference count of PyObject *.
|
|
static std::vector<std::shared_ptr<imperative::VarBase>>
|
|
GetVarBaseListFromPyHandle(const py::handle &handle) {
|
|
PyObject *py_obj = handle.ptr(); // get underlying PyObject
|
|
// Python None is not nullptr in C++!
|
|
if (!py_obj || py_obj == Py_None) {
|
|
return {};
|
|
}
|
|
|
|
const char *kIVarField = "_ivar";
|
|
PyObject *py_ivar = GetPythonAttribute(py_obj, kIVarField);
|
|
std::vector<std::shared_ptr<imperative::VarBase>> result;
|
|
|
|
if (py_ivar) { // Variable
|
|
result.emplace_back(
|
|
PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
|
|
Py_DECREF(py_ivar);
|
|
} else if (PyList_Check(py_obj)) { // List of Variable
|
|
size_t len = PyList_GET_SIZE(py_obj);
|
|
result.reserve(len);
|
|
for (size_t i = 0; i < len; ++i) {
|
|
PyObject *py_ivar =
|
|
PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kIVarField);
|
|
PADDLE_ENFORCE_NOT_NULL(py_ivar);
|
|
result.emplace_back(
|
|
PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
|
|
Py_DECREF(py_ivar);
|
|
}
|
|
} else if (PyTuple_Check(py_obj)) { // Tuple of Variable
|
|
size_t len = PyTuple_GET_SIZE(py_obj);
|
|
result.reserve(len);
|
|
for (size_t i = 0; i < len; ++i) {
|
|
PyObject *py_ivar =
|
|
PyObject_GetAttrString(PyTuple_GET_ITEM(py_obj, i), kIVarField);
|
|
PADDLE_ENFORCE_NOT_NULL(py_ivar);
|
|
result.emplace_back(
|
|
PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
|
|
Py_DECREF(py_ivar);
|
|
}
|
|
} else {
|
|
PADDLE_THROW(
|
|
"unsupported type %s, must be Variable, List[Variable] or "
|
|
"tuple[Variable]",
|
|
py::str(handle));
|
|
}
|
|
|
|
PADDLE_ENFORCE(PyErr_Occurred() == nullptr,
|
|
py::str(py::handle(PyErr_Occurred())));
|
|
|
|
return result;
|
|
}
|
|
|
|
using PyVarBaseMap = std::unordered_map<std::string, py::handle>;
|
|
|
|
static imperative::VarBasePtrMap ConvertToVarBasePtrMap(
|
|
const PyVarBaseMap &map) {
|
|
imperative::VarBasePtrMap result;
|
|
for (auto &pair : map) {
|
|
auto var_vec = GetVarBaseListFromPyHandle(pair.second);
|
|
if (!var_vec.empty()) {
|
|
result.emplace(pair.first, std::move(var_vec));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Bind Methods
|
|
void BindImperative(pybind11::module *m_ptr) {
|
|
auto &m = *m_ptr;
|
|
|
|
py::class_<imperative::detail::BackwardStrategy> backward_strategy(
|
|
m, "BackwardStrategy", R"DOC(
|
|
|
|
BackwardStrategy is a descriptor of a how to run the backward process. Now it has:
|
|
|
|
1. :code:`sort_sum_gradient`, which will sum the gradient by the reverse order of trace.
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import FC
|
|
|
|
x = np.ones([2, 2], np.float32)
|
|
with fluid.dygraph.guard():
|
|
inputs2 = []
|
|
for _ in range(10):
|
|
inputs2.append(fluid.dygraph.base.to_variable(x))
|
|
ret2 = fluid.layers.sums(inputs2)
|
|
loss2 = fluid.layers.reduce_sum(ret2)
|
|
backward_strategy = fluid.dygraph.BackwardStrategy()
|
|
backward_strategy.sort_sum_gradient = True
|
|
loss2.backward(backward_strategy)
|
|
)DOC");
|
|
backward_strategy.def(py::init())
|
|
.def_property("sort_sum_gradient",
|
|
[](const imperative::detail::BackwardStrategy &self) {
|
|
return self.sorted_sum_gradient_;
|
|
},
|
|
[](imperative::detail::BackwardStrategy &self,
|
|
bool sorted_sum_gradient) {
|
|
self.sorted_sum_gradient_ = sorted_sum_gradient;
|
|
});
|
|
|
|
m.def("start_imperative_gperf_profiler",
|
|
[]() { imperative::StartProfile(); });
|
|
|
|
m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
|
|
|
|
m.def("_is_dygraph_debug_enabled",
|
|
[]() { return imperative::IsDebugEnabled(); });
|
|
m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
|
|
|
|
py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
|
|
m, "VarBase", R"DOC()DOC")
|
|
.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
|
|
.def(
|
|
py::init<const std::string &, paddle::framework::proto::VarType::Type,
|
|
const std::vector<int64_t>, const paddle::platform::CPUPlace,
|
|
bool, bool>())
|
|
.def(
|
|
py::init<const std::string &, paddle::framework::proto::VarType::Type,
|
|
const std::vector<int64_t>,
|
|
const paddle::platform::CUDAPlace, bool, bool>())
|
|
.def("_run_backward",
|
|
[](imperative::VarBase &self,
|
|
const imperative::detail::BackwardStrategy &bckst) {
|
|
self.RunBackward(bckst);
|
|
})
|
|
.def("_grad_name", &imperative::VarBase::GradName)
|
|
.def("_grad_value", &imperative::VarBase::GradValue)
|
|
.def("_clear_gradient", &imperative::VarBase::ClearGradient)
|
|
.def("_grad_ivar",
|
|
[](const imperative::VarBase &self) { return self.grads_; },
|
|
py::return_value_policy::reference)
|
|
.def("_copy_to",
|
|
[](const imperative::VarBase &self, const platform::CPUPlace &place,
|
|
bool blocking) {
|
|
return self.NewVarBase(place, blocking).release();
|
|
},
|
|
py::return_value_policy::take_ownership)
|
|
.def("_copy_to",
|
|
[](const imperative::VarBase &self, const platform::CUDAPlace &place,
|
|
bool blocking) {
|
|
return self.NewVarBase(place, blocking).release();
|
|
},
|
|
py::return_value_policy::take_ownership)
|
|
.def("value",
|
|
[](const imperative::VarBase &self) { return self.var_.get(); },
|
|
py::return_value_policy::reference)
|
|
.def_property("name", &imperative::VarBase::Name,
|
|
&imperative::VarBase::SetName)
|
|
.def_property_readonly("shape", &imperative::VarBase::Shape)
|
|
.def_property_readonly("dtype", &imperative::VarBase::DataType)
|
|
.def_property("persistable", &imperative::VarBase::IsPersistable,
|
|
&imperative::VarBase::SetPersistable)
|
|
.def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
|
|
&imperative::VarBase::SetStopGradient);
|
|
|
|
py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
|
|
.def(py::init<const std::string &>())
|
|
.def("register_backward_hooks",
|
|
[](imperative::OpBase &self, const py::object &callable) {
|
|
self.RegisterBackwardHooks(callable);
|
|
})
|
|
.def_property("_trace_id",
|
|
[](const imperative::OpBase &self) {
|
|
py::gil_scoped_release release;
|
|
return self.trace_id_;
|
|
},
|
|
[](imperative::OpBase &self, int trace_id) {
|
|
py::gil_scoped_release release;
|
|
self.trace_id_ = trace_id;
|
|
},
|
|
py::return_value_policy::reference)
|
|
.def_property_readonly("type", &imperative::OpBase::Type);
|
|
|
|
py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
|
|
layer.def(py::init<>())
|
|
.def("forward",
|
|
[](imperative::Layer &self,
|
|
const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
|
|
return self.Forward(inputs);
|
|
});
|
|
|
|
// NOTE(zjl): Tracer use PyVarBaseMap as its parameter but not VarBasePtrMap.
|
|
// We call Python C-API to convert PyVarBaseMap to VarBasePtrMap, instead
|
|
// making conversion in Python code. This speed up Tracer.trace() about 6%
|
|
// in ptb model and make time cost in Python to be nearly zero.
|
|
py::class_<imperative::Tracer>(m, "Tracer", "")
|
|
.def("__init__",
|
|
[](imperative::Tracer &self, framework::BlockDesc *root_block) {
|
|
new (&self) imperative::Tracer(root_block);
|
|
})
|
|
.def("trace",
|
|
[](imperative::Tracer &self, imperative::OpBase *op,
|
|
const PyVarBaseMap &inputs, const PyVarBaseMap &outputs,
|
|
framework::AttributeMap attrs_map,
|
|
const platform::CPUPlace expected_place,
|
|
const bool stop_gradient = false) {
|
|
auto ins = ConvertToVarBasePtrMap(inputs);
|
|
auto outs = ConvertToVarBasePtrMap(outputs);
|
|
{
|
|
py::gil_scoped_release release;
|
|
self.Trace(op, std::move(ins), &outs, attrs_map, expected_place,
|
|
stop_gradient);
|
|
}
|
|
})
|
|
.def("trace", [](imperative::Tracer &self, imperative::OpBase *op,
|
|
const PyVarBaseMap &inputs, const PyVarBaseMap &outputs,
|
|
framework::AttributeMap attrs_map,
|
|
const platform::CUDAPlace expected_place,
|
|
const bool stop_gradient = false) {
|
|
auto ins = ConvertToVarBasePtrMap(inputs);
|
|
auto outs = ConvertToVarBasePtrMap(outputs);
|
|
{
|
|
py::gil_scoped_release release;
|
|
self.Trace(op, std::move(ins), &outs, attrs_map, expected_place,
|
|
stop_gradient);
|
|
}
|
|
});
|
|
|
|
// define parallel context
|
|
py::class_<imperative::ParallelStrategy> parallel_strategy(
|
|
m, "ParallelStrategy", "");
|
|
parallel_strategy.def(py::init())
|
|
.def_property(
|
|
"nranks",
|
|
[](const imperative::ParallelStrategy &self) { return self.nranks_; },
|
|
[](imperative::ParallelStrategy &self, int nranks) {
|
|
self.nranks_ = nranks;
|
|
})
|
|
.def_property("local_rank",
|
|
[](const imperative::ParallelStrategy &self) {
|
|
return self.local_rank_;
|
|
},
|
|
[](imperative::ParallelStrategy &self, int local_rank) {
|
|
self.local_rank_ = local_rank;
|
|
})
|
|
.def_property(
|
|
"trainer_endpoints",
|
|
[](const imperative::ParallelStrategy &self) {
|
|
return self.trainer_endpoints_;
|
|
},
|
|
[](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
|
|
self.trainer_endpoints_ = eps;
|
|
})
|
|
.def_property("current_endpoint",
|
|
[](const imperative::ParallelStrategy &self) {
|
|
return self.current_endpoint_;
|
|
},
|
|
[](imperative::ParallelStrategy &self,
|
|
const std::string &ep) { self.current_endpoint_ = ep; });
|
|
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
|
|
py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
|
|
"NCCLParallelContext");
|
|
|
|
nccl_ctx
|
|
.def(py::init<const imperative::ParallelStrategy &,
|
|
const platform::CUDAPlace &>())
|
|
.def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
|
|
#endif
|
|
}
|
|
|
|
} // namespace pybind
|
|
} // namespace paddle
|