You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/nccl_context.cc

148 lines
5.6 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/nccl_context.h"
#include <string>
#include <utility>
#include <vector>
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#endif
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/string/string_helper.h"
namespace paddle {
namespace imperative {
#if defined(PADDLE_WITH_NCCL)
void NCCLParallelContext::BcastNCCLId(
std::vector<ncclUniqueId> &nccl_ids, // NOLINT
int root) {
if (strategy_.local_rank_ == root) {
std::vector<std::string> other_trainers;
for (auto &ep : strategy_.trainer_endpoints_) {
if (ep != strategy_.current_endpoint_) {
other_trainers.push_back(ep);
}
}
platform::SendBroadCastCommID(other_trainers, &nccl_ids);
} else {
platform::RecvBroadCastCommID(strategy_.current_endpoint_, &nccl_ids);
}
}
void NCCLParallelContext::Init() {
std::vector<ncclUniqueId> nccl_ids;
nccl_ids.resize(strategy_.nrings_);
if (strategy_.local_rank_ == 0) {
// generate the unique ncclid on the root worker
for (size_t i = 0; i < nccl_ids.size(); ++i) {
platform::dynload::ncclGetUniqueId(&nccl_ids[i]);
}
}
BcastNCCLId(nccl_ids, 0);
int gpu_id = BOOST_GET_CONST(platform::CUDAPlace, place_).device;
for (int ring_id = 0; ring_id < strategy_.nrings_; ring_id++) {
VLOG(0) << "init nccl context nranks: " << strategy_.nranks_
<< " local rank: " << strategy_.local_rank_ << " gpu id: " << gpu_id
<< " ring id: " << ring_id;
// it will assign nccl_comm in CUDADeviceContext within ring_id
platform::NCCLCommContext::Instance().CreateNCCLComm(
&nccl_ids[ring_id], strategy_.nranks_, strategy_.local_rank_, gpu_id,
ring_id);
compute_events_.emplace_back(
platform::CudaEventResourcePool::Instance().New(
BOOST_GET_CONST(platform::CUDAPlace, place_).device));
comm_events_.emplace_back(platform::CudaEventResourcePool::Instance().New(
BOOST_GET_CONST(platform::CUDAPlace, place_).device));
}
}
void NCCLParallelContext::AllReduceByStream(const framework::Variable &src,
framework::Variable *dst,
int ring_id, bool use_calc_stream) {
PADDLE_ENFORCE_EQ(
platform::is_gpu_place(place_), true,
platform::errors::Unimplemented(
"Dynamic graph mode does not support multi-CPU training yet."));
AllReduce(src, dst, strategy_, ring_id, use_calc_stream);
}
paddle::platform::DeviceContext *NCCLParallelContext::GetDeviceContext(
int ring_id) {
return static_cast<platform::DeviceContext *>(
platform::NCCLCommContext::Instance()
.Get(ring_id, place_)
->dev_context());
}
void NCCLParallelContext::WaitCompute(int ring_id) {
PADDLE_ENFORCE_GE(ring_id, 0, platform::errors::OutOfRange(
"ring id must >= 0, but got %d", ring_id));
PADDLE_ENFORCE_LT(ring_id, compute_events_.size(),
platform::errors::OutOfRange(
"ring id must < compute events size,"
"but got ring id = %d, compute events size = %d",
ring_id, compute_events_.size()));
auto compute_stream = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place_))
->stream();
auto comm_stream =
platform::NCCLCommContext::Instance().Get(ring_id, place_)->stream();
auto event = compute_events_[ring_id].get();
// compute_stream-->event-->comm_stream
PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, compute_stream));
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamWaitEvent(comm_stream, event, 0));
}
void NCCLParallelContext::WaitComm(int ring_id) {
PADDLE_ENFORCE_GE(ring_id, 0, platform::errors::OutOfRange(
"ring id must >= 0, but got %d", ring_id));
PADDLE_ENFORCE_LT(ring_id, comm_events_.size(),
platform::errors::OutOfRange(
"ring id must < comm events size,"
"but got ring id = %d, comm events size = %d",
ring_id, comm_events_.size()));
auto compute_stream = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place_))
->stream();
auto comm_stream =
platform::NCCLCommContext::Instance().Get(ring_id, place_)->stream();
auto event = comm_events_[ring_id].get();
// comm_stream-->event-->compute_stream
PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, comm_stream));
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamWaitEvent(compute_stream, event, 0));
}
#endif
} // namespace imperative
} // namespace paddle