You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
6.4 KiB
197 lines
6.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifndef HL_CPU_MATRIX_KERNEL_CUH_
|
|
#define HL_CPU_MATRIX_KERNEL_CUH_
|
|
|
|
#include <stdio.h>
|
|
#include "hl_base.h"
|
|
|
|
#ifndef __CUDA_ARCH__
|
|
#include "hl_cpu_matrix_kernel_detail.cuh"
|
|
#endif
|
|
|
|
/**
|
|
* @brief cpu element wise unary operator.
|
|
*/
|
|
template <class T, class Op>
|
|
void hl_cpu_apply_unary_op(Op op, T* A_h, int dimM, int dimN, int lda) {
|
|
for (int i = 0; i < dimM; i ++) {
|
|
for (int j = 0; j < dimN; j++) {
|
|
op.cpuOperator(A_h[i*lda + j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief cpu element wise binary operator.
|
|
*/
|
|
template <class T, class Op, bool BAsRowVector, bool BAsColVector>
|
|
void hl_cpu_apply_binary_op(Op op,
|
|
T* A_h,
|
|
T* B_h,
|
|
int dimM,
|
|
int dimN,
|
|
int lda,
|
|
int ldb) {
|
|
for (int i = 0; i < dimM; i ++) {
|
|
for (int j = 0; j < dimN; j++) {
|
|
if (BAsRowVector == 0 && BAsColVector == 0) {
|
|
op.cpuOperator(A_h[i * lda + j], B_h[i * ldb + j]);
|
|
} else if (BAsRowVector == 1 && BAsColVector == 0) {
|
|
op.cpuOperator(A_h[i * lda + j], B_h[j]);
|
|
} else if (BAsRowVector == 0 && BAsColVector == 1) {
|
|
op.cpuOperator(A_h[i * lda + j], B_h[i * ldb]);
|
|
} else {
|
|
op.cpuOperator(A_h[i * lda + j], B_h[0]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief cpu element wise ternary operator.
|
|
*/
|
|
template <class T, class Op, bool CAsRowVector, bool CAsColVector>
|
|
void hl_cpu_apply_ternary_op(Op op,
|
|
T* A_h,
|
|
T* B_h,
|
|
T* C_h,
|
|
int dimM,
|
|
int dimN,
|
|
int lda,
|
|
int ldb,
|
|
int ldc) {
|
|
for (int i = 0; i < dimM; i ++) {
|
|
for (int j = 0; j < dimN; j++) {
|
|
if (CAsRowVector == 0 && CAsColVector == 0) {
|
|
op.cpuOperator(A_h[i*lda + j], B_h[i*ldb + j], C_h[i*ldc + j]);
|
|
} else if (CAsRowVector == 1 && CAsColVector == 0) {
|
|
op.cpuOperator(A_h[i*lda + j], B_h[i*ldb + j], C_h[j]);
|
|
} else if (CAsRowVector == 0 && CAsColVector == 1) {
|
|
op.cpuOperator(A_h[i*lda + j], B_h[i*ldb + j], C_h[i*ldc]);
|
|
} else {
|
|
op.cpuOperator(A_h[i*lda + j], B_h[i*ldb + j], C_h[0]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief cpu element wise quaternary operator.
|
|
*/
|
|
template <class T, class Op>
|
|
void hl_cpu_apply_quaternary_op(Op op,
|
|
T* A_h,
|
|
T* B_h,
|
|
T* C_h,
|
|
T* D_h,
|
|
int dimM,
|
|
int dimN,
|
|
int lda,
|
|
int ldb,
|
|
int ldc,
|
|
int ldd) {
|
|
for (int i = 0; i < dimM; i ++) {
|
|
for (int j = 0; j < dimN; j++) {
|
|
op.cpuOperator(A_h[i*lda + j],
|
|
B_h[i*ldb + j],
|
|
C_h[i*ldc + j],
|
|
D_h[i*ldd + j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Agg, class Op, class Saver>
|
|
void hl_cpu_matrix_row_op(Agg agg, Op op, Saver sv,
|
|
int dimM, int dimN,
|
|
real *dst, int ld,
|
|
real *A, int lda) {
|
|
#ifndef __CUDA_ARCH__
|
|
if (!Agg::sse || !Op::sse || !Saver::sse) {
|
|
hl_matrix_row_op(agg, op, sv, dimM, dimN, dst, ld, A, lda);
|
|
} else {
|
|
if (hl_check_align(A) && hl_check_align(lda*sizeof(real))) {
|
|
hl_sse_matrix_row_op(agg, op, sv, dimM, dimN, dst, ld, A, lda);
|
|
} else {
|
|
hl_matrix_row_op(agg, op, sv, dimM, dimN, dst, ld, A, lda);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template <class Agg, class Op, class Saver>
|
|
void hl_cpu_matrix_row_op(Agg agg, Op op, Saver sv,
|
|
int dimM, int dimN,
|
|
real *dst, int ld,
|
|
real *A, int lda,
|
|
real *B, int ldb) {
|
|
#ifndef __CUDA_ARCH__
|
|
if (!Agg::sse || !Op::sse || !Saver::sse) {
|
|
hl_matrix_row_op(agg, op, sv, dimM, dimN, dst, ld, A, lda, B, ldb);
|
|
} else {
|
|
if (hl_check_align(A) && hl_check_align(lda*sizeof(real))
|
|
&& hl_check_align(B) && hl_check_align(ldb*sizeof(real))) {
|
|
hl_sse_matrix_row_op(
|
|
agg, op, sv, dimM, dimN, dst, ld, A, lda, B, ldb);
|
|
} else {
|
|
hl_matrix_row_op(agg, op, sv, dimM, dimN, dst, ld, A, lda, B, ldb);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template <class Agg, class Op, class Saver>
|
|
void hl_cpu_matrix_column_op(Agg agg, Op op, Saver sv,
|
|
int dimM, int dimN,
|
|
real *dst,
|
|
real *A, int lda) {
|
|
#ifndef __CUDA_ARCH__
|
|
if (!Agg::sse || !Op::sse || !Saver::sse) {
|
|
hl_matrix_column_op(agg, op, sv, dimM, dimN, dst, A, lda);
|
|
} else {
|
|
if (hl_check_align(A) && hl_check_align(lda*sizeof(real))
|
|
&& hl_check_align(dst)) {
|
|
hl_sse_matrix_column_op(agg, op, sv, dimM, dimN, dst, A, lda);
|
|
} else {
|
|
hl_matrix_column_op(agg, op, sv, dimM, dimN, dst, A, lda);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template <class Agg, class Op, class Saver>
|
|
void hl_cpu_matrix_column_op(Agg agg, Op op, Saver sv,
|
|
int dimM, int dimN,
|
|
real *dst,
|
|
real *A, int lda,
|
|
real *B, int ldb) {
|
|
#ifndef __CUDA_ARCH__
|
|
if (!Agg::sse || !Op::sse || !Saver::sse) {
|
|
hl_matrix_column_op(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb);
|
|
} else {
|
|
if (hl_check_align(A) && hl_check_align(lda*sizeof(real))
|
|
&& hl_check_align(B) && hl_check_align(ldb*sizeof(real))
|
|
&& hl_check_align(dst)) {
|
|
hl_sse_matrix_column_op(
|
|
agg, op, sv, dimM, dimN, dst, A, lda, B, ldb);
|
|
} else {
|
|
hl_matrix_column_op(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif /* HL_CPU_MATRIX_KERNEL_CUH_ */
|