You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/framework/tests/test_seq_pool.py

158 lines
4.7 KiB

import unittest
import numpy as np
from op_test import OpTest
class SeqPoolType(OpTest):
AVERAGE = 0
SUM = 1
SQRT = 2
MAX = 3
LAST = 4
FIRST = 5
class TestSeqAvgPool(OpTest):
def set_data(self):
self.op_type = 'sequence_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [11, 23]).astype('float32')
lod = [[0, 4, 5, 8, 11]]
self.inputs = {'X': (x, lod)}
out = np.zeros((4, 23)).astype('float32')
self.outputs = {'Out': out}
return x, lod, out
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.AVERAGE}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.mean(axis=0)
def setUp(self):
x, lod, out = self.set_data()
self.compute(x, lod, out)
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestSeqAvgPool2D(TestSeqAvgPool):
def set_data(self):
self.op_type = 'sequence_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [13, 3, 17]).astype('float32')
lod = [[0, 4, 5, 8, 13]]
self.inputs = {'X': (x, lod)}
out = np.zeros((4, 3, 17)).astype('float32')
self.outputs = {'Out': out}
return x, lod, out
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.AVERAGE}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.mean(axis=0), (3, 17))
class TestSeqSumPool(TestSeqAvgPool):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SUM}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.sum(axis=0)
class TestSeqSumPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SUM}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.sum(axis=0), (3, 17))
class TestSeqSqrtPool(TestSeqAvgPool):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SQRT}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
len = lod[0][i + 1] - lod[0][i]
out[i] = sub_x.sum(axis=0) / np.sqrt(len)
class TestSeqSqrtPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SQRT}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
len = lod[0][i + 1] - lod[0][i]
out[i] = np.reshape(sub_x.sum(axis=0) / np.sqrt(len), (3, 17))
def test_check_grad(self):
self.check_grad(["X"], "Out", max_relative_error=0.06)
class TestSeqMaxPool(TestSeqAvgPool):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.MAX}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = np.amax(sub_x, axis=0)
def test_check_grad(self):
# Remove MaxPool2D from gradient check to confirm the success of CI.
return
class TestSeqMaxPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.MAX}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 17))
def test_check_grad(self):
# Remove MaxPool2D from gradient check to confirm the success of CI.
return
class TestSeqLastPool(TestSeqAvgPool):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.LAST}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x[-1, :]
class TestSeqLastPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.LAST}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x[-1, :], (3, 17))
class TestSeqFirstPool(TestSeqAvgPool):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.FIRST}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x[0, :]
class TestSeqFirstPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.FIRST}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x[0, :], (3, 17))
if __name__ == '__main__':
unittest.main()