You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tensor/logic.py

449 lines
16 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from ..fluid.layers.layer_function_generator import templatedoc
from .. import fluid
from ..fluid.framework import in_dygraph_mode
from paddle.common_ops_import import *
from ..framework import VarBase as Tensor
# TODO: define logic functions of a tensor
from ..fluid.layers import is_empty #DEFINE_ALIAS
from ..fluid.layers import logical_and #DEFINE_ALIAS
from ..fluid.layers import logical_not #DEFINE_ALIAS
from ..fluid.layers import logical_or #DEFINE_ALIAS
from ..fluid.layers import logical_xor #DEFINE_ALIAS
__all__ = [
'equal',
'equal_all',
'greater_equal',
'greater_than',
'is_empty',
'less_equal',
'less_than',
'logical_and',
'logical_not',
'logical_or',
'logical_xor',
'not_equal',
'allclose',
'is_tensor'
# 'isnan'
]
def equal_all(x, y, name=None):
"""
This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
**NOTICE**: The output of this OP has no gradient.
Args:
x(Tensor): Tensor, data type is float32, float64, int32, int64.
y(Tensor): Tensor, data type is float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: output Tensor, data type is bool, value is [False] or [True].
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3])
y = paddle.to_tensor([1, 2, 3])
z = paddle.to_tensor([1, 4, 3])
result1 = paddle.equal_all(x, y)
print(result1) # result1 = [True ]
result2 = paddle.equal_all(x, z)
print(result2) # result2 = [False ]
"""
helper = LayerHelper("equal_all", **locals())
out = helper.create_variable_for_type_inference(dtype='bool')
helper.append_op(
type='equal_all', inputs={'X': [x],
'Y': [y]}, outputs={'Out': [out]})
return out
@templatedoc()
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
"""
${comment}
Args:
x(Tensor): ${input_comment}.
y(Tensor): ${other_comment}.
rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
equal_nan(equalnantype, optional): ${equal_nan_comment}.
name (str, optional): Name for the operation. For more information, please
refer to :ref:`api_guide_Name`. Default: None.
Returns:
Tensor: ${out_comment}.
Raises:
TypeError: The data type of ``x`` must be one of float32, float64.
TypeError: The data type of ``y`` must be one of float32, float64.
TypeError: The type of ``rtol`` must be float.
TypeError: The type of ``atol`` must be float.
TypeError: The type of ``equal_nan`` must be bool.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([10000., 1e-07])
y = paddle.to_tensor([10000.1, 1e-08])
result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
equal_nan=False, name="ignore_nan")
np_result1 = result1.numpy()
# [False]
result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
equal_nan=True, name="equal_nan")
np_result2 = result2.numpy()
# [False]
x = paddle.to_tensor([1.0, float('nan')])
y = paddle.to_tensor([1.0, float('nan')])
result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
equal_nan=False, name="ignore_nan")
np_result1 = result1.numpy()
# [False]
result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
equal_nan=True, name="equal_nan")
np_result2 = result2.numpy()
# [True]
"""
if in_dygraph_mode():
return core.ops.allclose(x, y, 'rtol',
str(rtol), 'atol',
str(atol), 'equal_nan', equal_nan)
check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
check_type(rtol, 'rtol', float, 'allclose')
check_type(atol, 'atol', float, 'allclose')
check_type(equal_nan, 'equal_nan', bool, 'allclose')
helper = LayerHelper("allclose", **locals())
out = helper.create_variable_for_type_inference(dtype='bool')
inputs = {'Input': x, 'Other': y}
outputs = {'Out': out}
attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
helper.append_op(
type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)
return out
@templatedoc()
def equal(x, y, name=None):
"""
This layer returns the truth value of :math:`x == y` elementwise.
**NOTICE**: The output of this OP has no gradient.
Args:
x(Tensor): Tensor, data type is float32, float64, int32, int64.
y(Tensor): Tensor, data type is float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: output Tensor, it's shape is the same as the input's Tensor,
and the data type is bool. The result of this op is stop_gradient.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3])
y = paddle.to_tensor([1, 3, 2])
result1 = paddle.equal(x, y)
print(result1) # result1 = [True False False]
"""
if in_dygraph_mode():
return core.ops.equal(x, y)
check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
"equal")
check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
"equal")
helper = LayerHelper("equal", **locals())
out = helper.create_variable_for_type_inference(dtype='bool')
out.stop_gradient = True
helper.append_op(
type='equal', inputs={'X': [x],
'Y': [y]}, outputs={'Out': [out]})
return out
@templatedoc()
def greater_equal(x, y, name=None):
"""
This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
**NOTICE**: The output of this OP has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3])
y = paddle.to_tensor([1, 3, 2])
result1 = paddle.greater_equal(x, y)
print(result1) # result1 = [True False True]
"""
if in_dygraph_mode():
return core.ops.greater_equal(x, y)
check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
"greater_equal")
check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
"greater_equal")
helper = LayerHelper("greater_equal", **locals())
out = helper.create_variable_for_type_inference(dtype='bool')
out.stop_gradient = True
helper.append_op(
type='greater_equal',
inputs={'X': [x],
'Y': [y]},
outputs={'Out': [out]})
return out
@templatedoc()
def greater_than(x, y, name=None):
"""
This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
**NOTICE**: The output of this OP has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3])
y = paddle.to_tensor([1, 3, 2])
result1 = paddle.greater_than(x, y)
print(result1) # result1 = [False False True]
"""
if in_dygraph_mode():
return core.ops.greater_than(x, y)
check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
"greater_than")
check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
"greater_than")
helper = LayerHelper("greater_than", **locals())
out = helper.create_variable_for_type_inference(dtype='bool')
out.stop_gradient = True
helper.append_op(
type='greater_than',
inputs={'X': [x],
'Y': [y]},
outputs={'Out': [out]})
return out
@templatedoc()
def less_equal(x, y, name=None):
"""
This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
**NOTICE**: The output of this OP has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3])
y = paddle.to_tensor([1, 3, 2])
result1 = paddle.less_equal(x, y)
print(result1) # result1 = [True True False]
"""
if in_dygraph_mode():
return core.ops.less_equal(x, y)
check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
"less_equal")
check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
"less_equal")
helper = LayerHelper("less_equal", **locals())
out = helper.create_variable_for_type_inference(dtype='bool')
out.stop_gradient = True
helper.append_op(
type='less_equal', inputs={'X': [x],
'Y': [y]}, outputs={'Out': [out]})
return out
@templatedoc()
def less_than(x, y, name=None):
"""
This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
**NOTICE**: The output of this OP has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3])
y = paddle.to_tensor([1, 3, 2])
result1 = paddle.less_than(x, y)
print(result1) # result1 = [False True False]
"""
if in_dygraph_mode():
return core.ops.less_than(x, y)
check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
"less_than")
check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
"less_than")
helper = LayerHelper("less_than", **locals())
out = helper.create_variable_for_type_inference(dtype='bool')
out.stop_gradient = True
helper.append_op(
type='less_than', inputs={'X': [x],
'Y': [y]}, outputs={'Out': [out]})
return out
@templatedoc()
def not_equal(x, y, name=None):
"""
This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
**NOTICE**: The output of this OP has no gradient.
Args:
x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([1, 2, 3])
y = paddle.to_tensor([1, 3, 2])
result1 = paddle.not_equal(x, y)
print(result1) # result1 = [False True True]
"""
if in_dygraph_mode():
return core.ops.not_equal(x, y)
check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
"not_equal")
check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
"not_equal")
helper = LayerHelper("not_equal", **locals())
out = helper.create_variable_for_type_inference(dtype='bool')
out.stop_gradient = True
helper.append_op(
type='not_equal', inputs={'X': [x],
'Y': [y]}, outputs={'Out': [out]})
return out
def is_tensor(x):
"""
This function tests whether input object is a paddle.Tensor.
Args:
x (object): Object to test.
Returns:
A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Examples:
.. code-block:: python
import paddle
input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
check = paddle.is_tensor(input1)
print(check) #True
input3 = [1, 4]
check = paddle.is_tensor(input3)
print(check) #False
"""
return isinstance(x, Tensor)