You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
4.5 KiB
108 lines
4.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/conv2dtranspose_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
void Conv2DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
|
|
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
|
"Input(Input) of Conv2DTransposeOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Filter"),
|
|
"Input(Filter) of Conv2DTransposeOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Output"),
|
|
"Output(Output) of Conv2DTransposeOp should not be null.");
|
|
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
auto filter_dims = ctx->GetInputDim("Filter");
|
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
|
|
|
for (size_t i = 0; i < paddings.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(paddings[i], 0,
|
|
"No Padding allowed in conv transpose op.");
|
|
}
|
|
|
|
PADDLE_ENFORCE_EQ(in_dims.size(), 4,
|
|
"Conv2DTransposeOp input should be 4-D tensor.");
|
|
PADDLE_ENFORCE_EQ(filter_dims.size(), 4,
|
|
"Conv2DTransposeOp filter should be 4-D tensor.");
|
|
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
|
|
"input and kernel input dimension should be equal.");
|
|
|
|
auto output_height = (in_dims[2] - 1) * strides[0] + filter_dims[2];
|
|
auto output_width = (in_dims[3] - 1) * strides[1] + filter_dims[3];
|
|
ctx->SetOutputDim("Output",
|
|
{in_dims[0], filter_dims[1], output_height, output_width});
|
|
}
|
|
|
|
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
|
|
framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput(
|
|
"Input",
|
|
"(Tensor) The input tensor of convolution transpose operator. "
|
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
|
"number of input channels, H and W is the height and width of image.");
|
|
AddInput("Filter",
|
|
"(Tensor) The filter tensor of convolution transpose operator."
|
|
"The format of the filter tensor is CMHW, where C is the number of "
|
|
"output image channels, M is the number of input image channels, "
|
|
"H and W is height and width of filter. "
|
|
"We enforce groups number == 1 and padding == 0 in "
|
|
"convolution transpose Scenario.");
|
|
AddOutput("Output",
|
|
"(Tensor) The output tensor of convolution transpose operator."
|
|
"The format of output tensor is also NCHW.");
|
|
AddAttr<std::vector<int>>("strides",
|
|
"strides of convolution transpose operator.")
|
|
.SetDefault({1, 1});
|
|
AddAttr<std::vector<int>>("paddings",
|
|
"paddings of convolution transpose operator.")
|
|
.SetDefault({0, 0});
|
|
AddComment(R"DOC(
|
|
The convolution transpose operation calculates the output based on the input, filter
|
|
and strides, paddings, groups parameters. The size of each dimension of the
|
|
parameters is checked in the infer-shape.
|
|
)DOC");
|
|
}
|
|
|
|
void Conv2DTransposeOpGrad::InferShape(
|
|
framework::InferShapeContext* ctx) const {
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
auto filter_dims = ctx->GetInputDim("Filter");
|
|
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
|
|
}
|
|
}
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(conv2dtranspose, ops::Conv2DTransposeOp,
|
|
ops::Conv2DTransposeOpMaker, conv2dtranspose_grad,
|
|
ops::Conv2DTransposeOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
conv2dtranspose,
|
|
ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
conv2dtranspose_grad,
|
|
ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);
|