You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/framework/tests/test_layers.py

165 lines
5.6 KiB

import paddle.v2.framework.layers as layers
import paddle.v2.framework.nets as nets
from paddle.v2.framework.framework import Program, g_program
import paddle.v2.framework.core as core
import unittest
class TestBook(unittest.TestCase):
def test_fit_a_line(self):
program = Program()
x = layers.data(
name='x', shape=[13], data_type='float32', program=program)
y_predict = layers.fc(input=x, size=1, act=None, program=program)
y = layers.data(
name='y', shape=[1], data_type='float32', program=program)
cost = layers.square_error_cost(
input=y_predict, label=y, program=program)
avg_cost = layers.mean(x=cost, program=program)
self.assertIsNotNone(avg_cost)
program.append_backward(avg_cost)
print str(program)
def test_recognize_digits_mlp(self):
program = Program()
# Change g_program, so the rest layers use `g_program`
images = layers.data(
name='pixel', shape=[784], data_type='float32', program=program)
label = layers.data(
name='label', shape=[1], data_type='int32', program=program)
hidden1 = layers.fc(input=images, size=128, act='relu', program=program)
hidden2 = layers.fc(input=hidden1, size=64, act='relu', program=program)
predict = layers.fc(input=hidden2,
size=10,
act='softmax',
program=program)
cost = layers.cross_entropy(input=predict, label=label, program=program)
avg_cost = layers.mean(x=cost, program=program)
self.assertIsNotNone(avg_cost)
print str(program)
def test_simple_conv2d(self):
program = Program()
images = layers.data(
name='pixel', shape=[3, 48, 48], data_type='int32', program=program)
layers.conv2d(
input=images, num_filters=3, filter_size=[4, 4], program=program)
print str(program)
def test_recognize_digits_conv(self):
program = Program()
images = layers.data(
name='pixel',
shape=[1, 28, 28],
data_type='float32',
program=program)
label = layers.data(
name='label', shape=[1], data_type='int32', program=program)
conv_pool_1 = nets.simple_img_conv_pool(
input=images,
filter_size=5,
num_filters=2,
pool_size=2,
pool_stride=2,
act="relu",
program=program)
conv_pool_2 = nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=4,
pool_size=2,
pool_stride=2,
act="relu",
program=program)
predict = layers.fc(input=conv_pool_2,
size=10,
act="softmax",
program=program)
cost = layers.cross_entropy(input=predict, label=label, program=program)
avg_cost = layers.mean(x=cost, program=program)
program.append_backward(avg_cost)
print str(program)
def test_word_embedding(self):
program = Program()
dict_size = 10000
embed_size = 32
first_word = layers.data(
name='firstw', shape=[1], data_type='int32', program=program)
second_word = layers.data(
name='secondw', shape=[1], data_type='int32', program=program)
third_word = layers.data(
name='thirdw', shape=[1], data_type='int32', program=program)
forth_word = layers.data(
name='forthw', shape=[1], data_type='int32', program=program)
next_word = layers.data(
name='nextw', shape=[1], data_type='int32', program=program)
embed_param_attr_1 = {
'name': 'shared_w',
'init_attr': {
'max': 1.0,
'type': 'uniform_random',
'min': -1.0
}
}
embed_param_attr_2 = {'name': 'shared_w'}
embed_first = layers.embedding(
input=first_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr=embed_param_attr_1,
program=program)
embed_second = layers.embedding(
input=second_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr=embed_param_attr_2,
program=program)
embed_third = layers.embedding(
input=third_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr=embed_param_attr_2,
program=program)
embed_forth = layers.embedding(
input=forth_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr=embed_param_attr_2,
program=program)
concat_embed = layers.concat(
input=[embed_first, embed_second, embed_third, embed_forth],
axis=1,
program=program)
hidden1 = layers.fc(input=concat_embed,
size=256,
act='sigmoid',
program=program)
predict_word = layers.fc(input=hidden1,
size=dict_size,
act='softmax',
program=program)
cost = layers.cross_entropy(
input=predict_word, label=next_word, program=program)
avg_cost = layers.mean(x=cost, program=program)
self.assertIsNotNone(avg_cost)
print str(program)
if __name__ == '__main__':
unittest.main()