You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/framework/tests/test_word2vec.py

166 lines
4.5 KiB

import paddle.v2 as paddle
import paddle.v2.framework.layers as layers
import paddle.v2.framework.core as core
import paddle.v2.framework.optimizer as optimizer
from paddle.v2.framework.framework import Program, g_program
from paddle.v2.framework.executor import Executor
import numpy as np
init_program = Program()
program = Program()
embed_size = 32
hidden_size = 256
N = 5
batch_size = 32
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
first_word = layers.data(
name='firstw',
shape=[1],
data_type='int32',
program=program,
init_program=init_program)
second_word = layers.data(
name='secondw',
shape=[1],
data_type='int32',
program=program,
init_program=init_program)
third_word = layers.data(
name='thirdw',
shape=[1],
data_type='int32',
program=program,
init_program=init_program)
forth_word = layers.data(
name='forthw',
shape=[1],
data_type='int32',
program=program,
init_program=init_program)
next_word = layers.data(
name='nextw',
shape=[1],
data_type='int32',
program=program,
init_program=init_program)
embed_param_attr_1 = {
'name': 'shared_w',
'init_attr': {
'max': 1.0,
'type': 'uniform_random',
'min': -1.0
}
}
embed_param_attr_2 = {'name': 'shared_w'}
embed_first = layers.embedding(
input=first_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr=embed_param_attr_1,
program=program,
init_program=init_program)
embed_second = layers.embedding(
input=second_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr=embed_param_attr_2,
program=program,
init_program=init_program)
embed_third = layers.embedding(
input=third_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr=embed_param_attr_2,
program=program,
init_program=init_program)
embed_forth = layers.embedding(
input=forth_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr=embed_param_attr_2,
program=program,
init_program=init_program)
concat_embed = layers.concat(
input=[embed_first, embed_second, embed_third, embed_forth],
axis=1,
program=program,
init_program=init_program)
hidden1 = layers.fc(input=concat_embed,
size=hidden_size,
act='sigmoid',
program=program,
init_program=init_program)
predict_word = layers.fc(input=hidden1,
size=dict_size,
act='softmax',
program=program,
init_program=init_program)
cost = layers.cross_entropy(
input=predict_word,
label=next_word,
program=program,
init_program=init_program)
avg_cost = layers.mean(x=cost, program=program, init_program=init_program)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.dataset.imikolov.train(word_dict, N), batch_size)
place = core.CPUPlace()
exe = Executor(place)
exe.run(init_program, feed={}, fetch_list=[])
PASS_NUM = 100
for pass_id in range(PASS_NUM):
for data in train_reader():
input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)]
input_data = map(lambda x: np.array(x).astype("int32"), input_data)
input_data = map(lambda x: np.expand_dims(x, axis=1), input_data)
first_data = input_data[0]
first_tensor = core.LoDTensor()
first_tensor.set(first_data, place)
second_data = input_data[0]
second_tensor = core.LoDTensor()
second_tensor.set(second_data, place)
third_data = input_data[0]
third_tensor = core.LoDTensor()
third_tensor.set(third_data, place)
forth_data = input_data[0]
forth_tensor = core.LoDTensor()
forth_tensor.set(forth_data, place)
next_data = input_data[0]
next_tensor = core.LoDTensor()
next_tensor.set(next_data, place)
outs = exe.run(program,
feed={
'firstw': first_tensor,
'secondw': second_tensor,
'thirdw': third_tensor,
'forthw': forth_tensor,
'nextw': next_tensor
},
fetch_list=[avg_cost])
out = np.array(outs[0])
if out[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)