You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/distributed/request_handler_impl.cc

331 lines
13 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/distributed/request_handler_impl.h"
#include <iostream>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/distributed/rpc_server.h"
#include "paddle/fluid/string/piece.h"
#include "paddle/fluid/string/printf.h"
#include "paddle/fluid/string/split.h"
#include "paddle/fluid/operators/distributed/async_sparse_param_update_recorder.h"
#include "paddle/fluid/operators/distributed/heart_beat_monitor.h"
#include "paddle/fluid/operators/distributed/large_scale_kv.h"
namespace paddle {
namespace operators {
namespace distributed {
// define LOOKUP_TABLE_PATH for checkpoint notify to save lookup table variables
// to directory specified.
constexpr char LOOKUP_TABLE_PATH[] = "kLookupTablePath";
bool RequestSendHandler::Handle(const std::string &varname,
framework::Scope *scope,
framework::Variable *invar,
framework::Variable **outvar,
const int trainer_id,
const std::string &out_var_name,
const std::string &table_name) {
VLOG(4) << "RequestSendHandler:" << varname;
// Sync
if (varname == BATCH_BARRIER_MESSAGE) {
VLOG(3) << "sync: recv BATCH_BARRIER_MESSAGE";
rpc_server_->IncreaseBatchBarrier(kRequestSend);
} else if (varname == COMPLETE_MESSAGE) {
VLOG(3) << "sync: recv complete message";
if (HeartBeatMonitor::GetInstance() != nullptr) {
HeartBeatMonitor::GetInstance()->Update(trainer_id, "", COMPLETED);
}
rpc_server_->Complete();
} else {
// Async
if (distributed_mode_ != DistributedMode::kSync) {
VLOG(3) << "async process var: " << varname;
if (varname == BATCH_BARRIER_MESSAGE) {
PADDLE_THROW(
"async mode should not recv BATCH_BARRIER_MESSAGE or "
"COMPLETE_MESSAGE");
}
HeartBeatMonitor::GetInstance()->Update(trainer_id, varname, RUNNING);
std::string run_varname = varname;
string::Piece part_piece("@PIECE");
string::Piece var_name_piece = string::Piece(varname);
if (string::Contains(var_name_piece, part_piece)) {
auto varname_splits = paddle::string::Split(varname, '@');
PADDLE_ENFORCE_EQ(varname_splits.size(), 3);
run_varname = varname_splits[0];
scope->Rename(varname, run_varname);
}
auto *var = scope->FindVar(run_varname);
// for sparse ids
if (var->IsType<framework::SelectedRows>()) {
if (distributed_mode_ == DistributedMode::kAsync ||
distributed_mode_ == DistributedMode::kHalfAsync) {
auto *ins = distributed::LargeScaleKV::GetInstance();
if (ins->GradInLargeScale(run_varname)) {
auto *large_scale_var = ins->GetByGrad(run_varname);
for (auto name : large_scale_var->CachedVarnames()) {
scope->Var(name);
}
}
}
if (distributed_mode_ == DistributedMode::kGeo) {
if (AsyncSparseParamUpdateRecorder::GetInstance()->HasGrad(
run_varname)) {
auto &grad_slr =
scope->FindVar(run_varname)->Get<framework::SelectedRows>();
AsyncSparseParamUpdateRecorder::GetInstance()->Update(
run_varname, grad_slr.rows());
}
}
}
executor_->RunPreparedContext((*grad_to_prepared_ctx_)[run_varname].get(),
scope);
return true;
} else { // sync
rpc_server_->WaitCond(kRequestSend);
VLOG(3) << "sync: processing received var: " << varname;
PADDLE_ENFORCE_NOT_NULL(
invar, platform::errors::NotFound(
"sync: Can not find server side var %s.", varname));
}
}
return true;
}
bool RequestGetHandler::Handle(const std::string &varname,
framework::Scope *scope,
framework::Variable *invar,
framework::Variable **outvar,
const int trainer_id,
const std::string &out_var_name,
const std::string &table_name) {
VLOG(3) << "RequestGetHandler:" << varname
<< " out_var_name: " << out_var_name << " trainer_id: " << trainer_id
<< " table_name: " << table_name;
if (distributed_mode_ == DistributedMode::kSync) {
if (varname == FETCH_BARRIER_MESSAGE) {
VLOG(3) << "sync: recv fetch barrier message";
rpc_server_->IncreaseBatchBarrier(kRequestGet);
} else {
rpc_server_->WaitCond(kRequestGet);
*outvar = scope_->FindVar(varname);
}
} else {
if (varname != FETCH_BARRIER_MESSAGE && varname != COMPLETE_MESSAGE) {
if (enable_dc_asgd_) {
// NOTE: the format is determined by distribute_transpiler.py
std::string param_bak_name =
string::Sprintf("%s.trainer_%d_bak", varname, trainer_id);
VLOG(3) << "getting " << param_bak_name << " trainer_id " << trainer_id;
auto var = scope_->FindVar(varname);
auto t_orig = var->Get<framework::LoDTensor>();
auto param_bak = scope_->Var(param_bak_name);
auto t = param_bak->GetMutable<framework::LoDTensor>();
t->mutable_data(dev_ctx_->GetPlace(), t_orig.type());
VLOG(3) << "copying " << varname << " to " << param_bak_name;
framework::TensorCopy(t_orig, dev_ctx_->GetPlace(), t);
}
if (distributed_mode_ == DistributedMode::kGeo &&
AsyncSparseParamUpdateRecorder::GetInstance()->HasParam(varname) &&
!table_name.empty()) {
VLOG(3) << "AsyncSparseParamUpdateRecorder " << varname << " exist ";
std::vector<int64_t> updated_rows;
AsyncSparseParamUpdateRecorder::GetInstance()->GetAndClear(
varname, trainer_id, &updated_rows);
if (VLOG_IS_ON(3)) {
std::ostringstream sstream;
sstream << "[";
for (auto &row_id : updated_rows) {
sstream << row_id << ", ";
}
sstream << "]";
VLOG(3) << "updated_rows size: " << updated_rows.size() << " "
<< sstream.str();
}
auto &origin_tensor =
scope_->FindVar(varname)->Get<framework::LoDTensor>();
auto *origin_tensor_data = origin_tensor.data<float>();
auto &dims = origin_tensor.dims();
*outvar = scope->Var();
auto *out_slr = (*outvar)->GetMutable<framework::SelectedRows>();
out_slr->set_rows(updated_rows);
out_slr->set_height(dims[0]);
auto out_dims = framework::make_ddim(
{static_cast<int64_t>(updated_rows.size()), dims[1]});
auto *data = out_slr->mutable_value()->mutable_data<float>(
out_dims, origin_tensor.place());
auto width = dims[1];
for (size_t i = 0; i < updated_rows.size(); ++i) {
PADDLE_ENFORCE_LT(updated_rows[i], dims[0]);
memcpy(data + i * width, origin_tensor_data + updated_rows[i] * width,
sizeof(float) * width);
}
} else {
*outvar = scope_->FindVar(varname);
}
}
}
return true;
}
bool RequestGetNoBarrierHandler::Handle(const std::string &varname,
framework::Scope *scope,
framework::Variable *invar,
framework::Variable **outvar,
const int trainer_id,
const std::string &out_var_name,
const std::string &table_name) {
VLOG(4) << "RequestGetNoBarrierHandler:" << varname
<< " out_var_name: " << out_var_name;
// get var from pserver immediately without barriers
string::Piece without_barrier_piece(WITHOUT_BARRIER_MESSAGE);
string::Piece var_name_piece = string::Piece(varname);
if (string::Contains(var_name_piece, without_barrier_piece)) {
var_name_piece = string::TrimSuffix(var_name_piece, without_barrier_piece);
VLOG(4) << "Get var " << var_name_piece << " with "
<< WITHOUT_BARRIER_MESSAGE;
*outvar = scope_->FindVar(var_name_piece.ToString());
return true;
} else {
PADDLE_THROW("GetNoBarrier must contain %s", WITHOUT_BARRIER_MESSAGE);
}
return true;
}
bool RequestPrefetchHandler::Handle(const std::string &varname,
framework::Scope *scope,
framework::Variable *invar,
framework::Variable **outvar,
const int trainer_id,
const std::string &out_var_name,
const std::string &table_name) {
VLOG(4) << "RequestPrefetchHandler " << varname;
(*outvar)->GetMutable<framework::LoDTensor>();
VLOG(1) << "Prefetch "
<< "tablename: " << table_name << " ids:" << varname
<< " out: " << out_var_name;
paddle::platform::CPUPlace cpu_place;
auto *ins = distributed::LargeScaleKV::GetInstance();
if (ins->ParamInLargeScale(table_name)) {
auto lookup_table_op = PullLargeScaleOp(table_name, varname, out_var_name);
lookup_table_op->Run(*scope, cpu_place);
} else {
auto lookup_table_op =
BuildLookupTableOp(table_name, varname, out_var_name);
lookup_table_op->Run(*scope, cpu_place);
}
return true;
}
bool RequestCheckpointHandler::Handle(const std::string &varname,
framework::Scope *scope,
framework::Variable *invar,
framework::Variable **outvar,
const int trainer_id,
const std::string &out_var_name,
const std::string &table_name) {
VLOG(4) << "receive save var " << varname << " with path " << out_var_name;
auto *ins = distributed::LargeScaleKV::GetInstance();
ins->Get(varname)->Save(out_var_name);
// auto checkpoint_op = BuildCheckpointOp(varname, out_var_name);
// paddle::platform::CPUPlace cpu_place;
// checkpoint_op->Run(*scope_, cpu_place);
return true;
}
bool RequestNotifyHandler::Handle(const std::string &varname,
framework::Scope *scope,
framework::Variable *invar,
framework::Variable **outvar,
const int trainer_id,
const std::string &out_var_name,
const std::string &table_name) {
VLOG(3) << "RequestNotifyHandler: " << varname
<< ", trainer_id: " << trainer_id;
string::Piece decay_piece(STEP_COUNTER);
string::Piece var_name_piece = string::Piece(varname);
if (string::Contains(var_name_piece, decay_piece)) {
VLOG(3) << "LearningRate Decay Counter Update";
auto *send_var = scope->FindVar(varname);
auto send_var_tensor = send_var->Get<framework::LoDTensor>();
auto *send_value =
send_var_tensor.mutable_data<int64_t>(send_var_tensor.place());
auto counter = decay_counters.at(trainer_id);
counter += send_value[0];
decay_counters.at(trainer_id) = counter;
auto *global_step_var = this->scope()->FindVar(LEARNING_RATE_DECAY_COUNTER);
if (global_step_var == nullptr) {
PADDLE_THROW(platform::errors::InvalidArgument(
"can not find LEARNING_RATE_DECAY_COUNTER "));
}
auto *tensor = global_step_var->GetMutable<framework::LoDTensor>();
auto *value = tensor->mutable_data<int64_t>(platform::CPUPlace());
auto global_counter = 0;
for (auto &trainer_counter : decay_counters) {
global_counter += trainer_counter.second;
}
value[0] = global_counter;
if (lr_decay_prepared_ctx_.get() == nullptr) {
PADDLE_THROW(platform::errors::InvalidArgument(
"can not find decay block for executor"));
}
executor_->RunPreparedContext(lr_decay_prepared_ctx_.get(), scope_);
}
return true;
}
} // namespace distributed
} // namespace operators
} // namespace paddle