You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
5.8 KiB
160 lines
5.8 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os, sys
|
|
import numpy as np
|
|
import logging
|
|
from PIL import Image
|
|
from optparse import OptionParser
|
|
|
|
import paddle.utils.image_util as image_util
|
|
|
|
from py_paddle import swig_paddle, DataProviderConverter
|
|
from paddle.trainer.PyDataProvider2 import dense_vector
|
|
from paddle.trainer.config_parser import parse_config
|
|
|
|
logging.basicConfig(
|
|
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s')
|
|
logging.getLogger().setLevel(logging.INFO)
|
|
|
|
|
|
class ImageClassifier():
|
|
def __init__(self,
|
|
train_conf,
|
|
use_gpu=True,
|
|
model_dir=None,
|
|
resize_dim=None,
|
|
crop_dim=None,
|
|
mean_file=None,
|
|
oversample=False,
|
|
is_color=True):
|
|
"""
|
|
train_conf: network configure.
|
|
model_dir: string, directory of model.
|
|
resize_dim: int, resized image size.
|
|
crop_dim: int, crop size.
|
|
mean_file: string, image mean file.
|
|
oversample: bool, oversample means multiple crops, namely five
|
|
patches (the four corner patches and the center
|
|
patch) as well as their horizontal reflections,
|
|
ten crops in all.
|
|
"""
|
|
self.train_conf = train_conf
|
|
self.model_dir = model_dir
|
|
if model_dir is None:
|
|
self.model_dir = os.path.dirname(train_conf)
|
|
|
|
self.resize_dim = resize_dim
|
|
self.crop_dims = [crop_dim, crop_dim]
|
|
self.oversample = oversample
|
|
self.is_color = is_color
|
|
|
|
self.transformer = image_util.ImageTransformer(is_color=is_color)
|
|
self.transformer.set_transpose((2, 0, 1))
|
|
|
|
self.mean_file = mean_file
|
|
mean = np.load(self.mean_file)['data_mean']
|
|
mean = mean.reshape(3, self.crop_dims[0], self.crop_dims[1])
|
|
self.transformer.set_mean(mean) # mean pixel
|
|
gpu = 1 if use_gpu else 0
|
|
conf_args = "is_test=1,use_gpu=%d,is_predict=1" % (gpu)
|
|
conf = parse_config(train_conf, conf_args)
|
|
swig_paddle.initPaddle("--use_gpu=%d" % (gpu))
|
|
self.network = swig_paddle.GradientMachine.createFromConfigProto(
|
|
conf.model_config)
|
|
assert isinstance(self.network, swig_paddle.GradientMachine)
|
|
self.network.loadParameters(self.model_dir)
|
|
|
|
data_size = 3 * self.crop_dims[0] * self.crop_dims[1]
|
|
slots = [dense_vector(data_size)]
|
|
self.converter = DataProviderConverter(slots)
|
|
|
|
def get_data(self, img_path):
|
|
"""
|
|
1. load image from img_path.
|
|
2. resize or oversampling.
|
|
3. transformer data: transpose, sub mean.
|
|
return K x H x W ndarray.
|
|
img_path: image path.
|
|
"""
|
|
image = image_util.load_image(img_path, self.is_color)
|
|
if self.oversample:
|
|
# image_util.resize_image: short side is self.resize_dim
|
|
image = image_util.resize_image(image, self.resize_dim)
|
|
image = np.array(image)
|
|
input = np.zeros(
|
|
(1, image.shape[0], image.shape[1], 3), dtype=np.float32)
|
|
input[0] = image.astype(np.float32)
|
|
input = image_util.oversample(input, self.crop_dims)
|
|
else:
|
|
image = image.resize(self.crop_dims, Image.ANTIALIAS)
|
|
input = np.zeros(
|
|
(1, self.crop_dims[0], self.crop_dims[1], 3), dtype=np.float32)
|
|
input[0] = np.array(image).astype(np.float32)
|
|
|
|
data_in = []
|
|
for img in input:
|
|
img = self.transformer.transformer(img).flatten()
|
|
data_in.append([img.tolist()])
|
|
return data_in
|
|
|
|
def forward(self, input_data):
|
|
in_arg = self.converter(input_data)
|
|
return self.network.forwardTest(in_arg)
|
|
|
|
def forward(self, data, output_layer):
|
|
"""
|
|
input_data: py_paddle input data.
|
|
output_layer: specify the name of probability, namely the layer with
|
|
softmax activation.
|
|
return: the predicting probability of each label.
|
|
"""
|
|
input = self.converter(data)
|
|
self.network.forwardTest(input)
|
|
output = self.network.getLayerOutputs(output_layer)
|
|
# For oversampling, average predictions across crops.
|
|
# If not, the shape of output[name]: (1, class_number),
|
|
# the mean is also applicable.
|
|
return output[output_layer]['value'].mean(0)
|
|
|
|
def predict(self, image=None, output_layer=None):
|
|
assert isinstance(image, basestring)
|
|
assert isinstance(output_layer, basestring)
|
|
data = self.get_data(image)
|
|
prob = self.forward(data, output_layer)
|
|
lab = np.argsort(-prob)
|
|
logging.info("Label of %s is: %d", image, lab[0])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
image_size = 32
|
|
crop_size = 32
|
|
multi_crop = True
|
|
config = "vgg_16_cifar.py"
|
|
output_layer = "__fc_layer_1__"
|
|
mean_path = "data/cifar-out/batches/batches.meta"
|
|
model_path = sys.argv[1]
|
|
image = sys.argv[2]
|
|
use_gpu = bool(int(sys.argv[3]))
|
|
|
|
obj = ImageClassifier(
|
|
train_conf=config,
|
|
model_dir=model_path,
|
|
resize_dim=image_size,
|
|
crop_dim=crop_size,
|
|
mean_file=mean_path,
|
|
use_gpu=use_gpu,
|
|
oversample=multi_crop)
|
|
obj.predict(image, output_layer)
|