You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/trainer/config_parser.py

3128 lines
109 KiB

# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
'''
The following functions are available in the config file:
Bias: define bias. To be used as value of bias argument in Layer().
Data: define data provider.
Input: define input layer for a layer. To be used as element of inputs argument
in Layer().
Conv: define a convolution operation for an input of a layer.
Norm: define a normalization operation for an input of a layer.
Pool: define a pooling operation for an input of a layer.
Layer: define a layer.
Parameter: define a parameter.
Import: import another config file. If the imported config file name is
a relative path, then it will be searched under the directory of the
current config file.
Inputs(layer_names...):
Define the name of the input layers of the NeuralNetwork.
The type of these layers must be "data".
These layers will be provided with the DataBatch obtained
from DataProvider. The data streams from DataProvider must
have the same order.
Outputs(layer_names...):
Define the name of the output layers of the NeuralNetwork.
Usually the output is simply the cost layer.
You can specify other layers as outputs and calculate the
cost (and its derivative) yourself.
default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters
get_config_arg(name, type, default): Get the value for a config parameter.
*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example
To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]
'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil
try:
from paddle.proto.DataConfig_pb2 import DataConfig
from paddle.proto.ModelConfig_pb2 import ModelConfig
from paddle.proto.ModelConfig_pb2 import LayerConfig
from paddle.proto.ModelConfig_pb2 import LayerInputConfig
from paddle.proto.ModelConfig_pb2 import ProjectionConfig
from paddle.proto.ModelConfig_pb2 import OperatorConfig
from paddle.proto.ModelConfig_pb2 import GeneratorConfig
from paddle.proto.ModelConfig_pb2 import LinkConfig
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
from paddle.proto.TrainerConfig_pb2 import TrainerConfig
except Exception as e:
traceback.print_exc()
raise
logging.basicConfig(
format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s',
)
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
print=logger.info
# from layer type name to layer class
g_layer_type_map = {}
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
g_default_momentum = 0.,
g_default_decay_rate = 0.,
g_default_initial_mean = 0.,
g_default_initial_std = 0.01,
g_default_num_batches_regularization = 1,
g_default_initial_strategy = 0,
g_default_initial_smart = False,
g_default_gradient_clipping_threshold = 0.,
g_default_device = -1,
g_default_update_hooks = None,
g_default_compact_func = None,
g_config = TrainerConfig(),
g_layer_map = {},
g_parameter_map = {},
g_extended_config_funcs = {},
# store command args of paddle_trainer
g_command_config_args = {},
# Used for PyDataProvider to avoid duplicate module name
g_py_module_name_list = [],
g_current_submodel = None,
g_root_submodel = None,
g_submodel_map = {},
g_submodel_stack = [],
g_add_submodel_suffix = False,
):
for k, v in locals().iteritems():
globals()[k] = copy.deepcopy(v)
# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
return type(x)
# Check a condition derived config file
def config_assert(b, msg):
if not b:
logger.fatal(msg)
g_config_funcs = {}
# decorator for indicating a function which can be used in config file
def config_func(func):
g_config_funcs[func.func_name] = func
return func
# decorator for indicating a class which can be used in config file
def config_class(cls):
g_config_funcs[cls.__name__] = cls
return cls
# decorator for indicating a class for a layer type
def config_layer(layer_type):
def wrap(cls):
g_config_funcs[cls.__name__] = cls
g_layer_type_map[layer_type] = cls
return cls
return wrap
def gen_parameter_name(layer_name, input_index):
return '_%s.w%d' % (layer_name, input_index)
def gen_bias_parameter_name(layer_name):
return '_%s.wbias' % layer_name
def default(x, default_value):
return default_value if x is None else x
class Cfg(object):
def add_keys(self, locals):
for k, v in locals.iteritems():
if not k.startswith('_'):
self.__setattr__(k, v)
# functions available in config file
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
for name in args:
name = MakeLayerNameInSubmodel(name)
global g_current_submodel, g_root_submodel
if g_current_submodel.is_recurrent_layer_group:
config_assert(False, "Do not set Inputs in recurrent layer group")
else:
g_current_submodel.input_layer_names.append(name)
if g_current_submodel is g_root_submodel:
g_config.model_config.input_layer_names.append(name)
# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
for name in args:
name = MakeLayerNameInSubmodel(name)
global g_current_submodel, g_root_submodel
if g_current_submodel.is_recurrent_layer_group:
config_assert(False, "Do not set Outputs in recurrent layer group")
else:
g_current_submodel.output_layer_names.append(name)
if g_current_submodel is g_root_submodel:
g_config.model_config.output_layer_names.append(name)
@config_func
def SubModelBegin(name):
global g_current_submodel, g_root_submodel, g_submodel_stack
g_submodel_stack.append(g_current_submodel)
name = MakeLayerNameInParentSubmodel(name) #rename in nested submodel
config_assert(name not in g_submodel_map,
'Duplicated submodel name: %s' % name)
sub_model = g_config.model_config.sub_models.add()
sub_model.name = name
g_submodel_map[name] = sub_model
g_current_submodel = sub_model
@config_func
def SubModelEnd(name = None):
global g_current_submodel, g_root_submodel, g_submodel_stack
config_assert(g_current_submodel is not g_root_submodel, "submodel not begin")
if name is not None:
config_assert(g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
"submodel name error")
g_current_submodel = g_submodel_stack.pop()
def MakeLayerNameInParentSubmodel(name):
suffix = ""
for submodel in g_submodel_stack[1:]:
suffix = "@" + submodel.name + suffix
return name + suffix
def GetLayerBaseName(name):
return name.split('@')[0]
def MakeLayerNameInSubmodel(name, submodel_name = None):
global g_current_submodel
global g_add_submodel_suffix
if (submodel_name is None
and not g_add_submodel_suffix
and not g_current_submodel.is_recurrent_layer_group):
return name
if submodel_name is None:
submodel_name = g_current_submodel.name
return name + "@" + submodel_name
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
# seq_i_length: one interger, seq_i content length,
# [seq_i content], length = seq_i_length
# seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
in_links,
seq_reversed=False):
global g_current_submodel
config_assert(g_config.model_config.type == "recurrent_nn",
"RecurrentLayerGroup should be used only in recurrent_nn")
RecurrentLayerGroup(name=name) # add to father model
SubModelBegin(name)
g_current_submodel.is_recurrent_layer_group = True
g_current_submodel.reversed = seq_reversed
in_links_count = 0
for link in in_links:
if isinstance(link, basestring):
name = link
has_subseq = False
else:
name = link.link_name
has_subseq = link.has_subseq
if in_links_count == 0:
in_links_has_subseq = has_subseq
else:
config_assert(in_links_has_subseq == has_subseq,
"The sequence type of in_links should be the same in RecurrentLayerGroup")
in_links_count += 1
layer_name = MakeLayerNameInParentSubmodel(name)
layer = g_layer_map[layer_name]
if has_subseq:
SequenceScatterAgentLayer(name=name, size=layer.size)
else:
ScatterAgentLayer(name=name, size=layer.size)
pair = g_current_submodel.in_links.add()
pair.layer_name = layer_name
pair.link_name = MakeLayerNameInSubmodel(name)
pair.has_subseq = has_subseq
@config_func
def RecurrentLayerGroupSetOutLink(link):
if isinstance(link, basestring):
name = link
has_subseq = False
else:
name = link.link_name
has_subseq = link.has_subseq
layer_name = MakeLayerNameInParentSubmodel(name)
pair = g_current_submodel.out_links.add()
pair.layer_name = MakeLayerNameInSubmodel(name)
pair.link_name = layer_name
pair.has_subseq = has_subseq
def RecurrentLayerGroupSetGenerator(generator=None):
generator.eos_layer_name = MakeLayerNameInSubmodel(
generator.eos_layer_name)
g_current_submodel.generator.CopyFrom(generator)
@config_func
def RecurrentLayerGroupBegin(name,
in_links,
out_links,
generator=None,
seq_reversed=False):
RecurrentLayerGroupWithoutOutLinksBegin(name,
in_links,
seq_reversed)
for link in out_links:
RecurrentLayerGroupSetOutLink(link)
if generator is not None:
RecurrentLayerGroupSetGenerator(generator)
config_assert(len(in_links) == 0,
"no in_links should be passed to generator")
config_assert(len(out_links) >= 1,
"one or more than one out_links should be passed to generator")
@config_func
def RecurrentLayerGroupEnd(name):
global g_current_submodel
config_assert(g_current_submodel.is_recurrent_layer_group,
"RecurrentLayerGroup not begin")
for pair in g_current_submodel.memories: #check exist
layer = g_layer_map[pair.layer_name]
config_assert(layer is not None, "memory declare wrong name:%s" % pair.layer_name)
memory_link = g_layer_map[pair.link_name]
config_assert(layer.size == memory_link.size,
"memory declare wrong size:%d" % memory_link.size)
prev_submodel = g_current_submodel
SubModelEnd(name)
for pair in prev_submodel.out_links:
layer = g_layer_map[pair.layer_name]
# add out agent to father model
agent_name = GetLayerBaseName(pair.link_name)
if prev_submodel.HasField("generator"):
DataLayer(name=agent_name, size=layer.size)
elif pair.has_subseq:
SequenceGatherAgentLayer(name=agent_name, size=layer.size)
else:
GatherAgentLayer(name=agent_name, size=layer.size)
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
g_config.model_config.type = name
@config_class
class Bias(Cfg):
def __init__(
self,
parameter_name=None,
learning_rate=None,
momentum=None,
decay_rate=None,
decay_rate_l1=None,
initial_mean=None,
initial_std=None,
initial_strategy=None,
initial_smart=None,
num_batches_regularization=None,
sparse_remote_update=None,
gradient_clipping_threshold=None,
is_static=None,
is_shared=None,
):
self.add_keys(locals())
# Define one input for a layer
@config_class
class Input(Cfg):
def __init__(
self,
input_layer_name,
parameter_name=None,
learning_rate=None,
momentum=None,
decay_rate=None,
decay_rate_l1=None,
initial_mean=None,
initial_std=None,
initial_strategy=None,
initial_smart=None,
num_batches_regularization=None,
sparse_remote_update=None,
sparse_update=None,
gradient_clipping_threshold=None,
conv=None,
norm=None,
pool=None,
image=None,
block_expand=None,
format=None,
nnz=None,
is_static=None,
is_shared=None,
update_hooks=None,
input_layer_argument=None,
):
self.add_keys(locals())
self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)
# Define a projection for iexed layer
@config_class
class Projection(Input):
type = None # subclass should set it correctly
def __init__(
self,
input_layer_name,
size = 0, # projection output size
parameter_name=None,
learning_rate=None,
momentum=None,
decay_rate=None,
decay_rate_l1=None,
initial_mean=None,
initial_std=None,
initial_strategy=None,
initial_smart=None,
num_batches_regularization=None,
sparse_remote_update=None,
sparse_update=None,
gradient_clipping_threshold=None,
ptype=None,
format=None,
nnz=None,
is_static=None,
is_shared=None,
update_hooks=None,
input_layer_argument=None,
):
self.add_keys(locals())
self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)
self.proj_conf = ProjectionConfig()
if ptype is not None:
self.proj_conf.type = ptype
else:
self.proj_conf.type = self.type
# calculate the output_size given input_size. return 0
# to indicate using the size from Layer config
def calc_output_size(self, input_layer_config):
return self.size
def calc_parameter_size(self, input_size, output_size):
raise NotimplementedError
def calc_parameter_dims(self, input_size, output_size):
raise NotimplementedError
@config_class
class IdentityProjection(Projection):
type = 'identity'
def calc_output_size(self, input_layer_config):
return input_layer_config.size
def calc_parameter_size(self, input_size, output_size):
return 0
def calc_parameter_dims(self, input_size, output_size):
return []
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
type = 'identity_offset'
def __init__(
self,
input_layer_name,
offset,
**xargs):
super(IdentityOffsetProjection, self).__init__(
input_layer_name, **xargs)
self.proj_conf.offset = offset
def calc_parameter_size(self, input_size, output_size):
return 0
def calc_parameter_dims(self, input_size, output_size):
return []
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
type = 'dot_mul'
def calc_output_size(self, input_layer_config):
return input_layer_config.size
def calc_parameter_size(self, input_size, output_size):
return output_size
def calc_parameter_dims(self, input_size, output_size):
return [1, output_size]
@config_class
class TableProjection(Projection):
type = 'table'
def calc_parameter_size(self, input_size, output_size):
return input_size * output_size
def calc_parameter_dims(self, input_size, output_size):
return [input_size, output_size]
@config_class
class FullMatrixProjection(Projection):
type = 'fc'
def calc_parameter_size(self, input_size, output_size):
return input_size * output_size
def calc_parameter_dims(self, input_size, output_size):
return [input_size, output_size]
@config_class
class TransposedFullMatrixProjection(Projection):
type = 'trans_fc'
def calc_parameter_size(self, input_size, output_size):
return input_size * output_size
def calc_parameter_dims(self, input_size, output_size):
return [output_size, input_size]
@config_class
class ContextProjection(Projection):
type = 'context'
def __init__(
self,
input_layer_name,
context_start,
context_length,
trainable_padding,
**xargs):
super(ContextProjection, self).__init__(input_layer_name, **xargs)
self.proj_conf.context_start = context_start
self.proj_conf.context_length = context_length
self.proj_conf.trainable_padding = trainable_padding
self._total_pad = max(0, -self.proj_conf.context_start) \
+ max(0, self.proj_conf.context_start \
+ self.proj_conf.context_length - 1)
def calc_output_size(self, input_layer_config):
return input_layer_config.size * self.proj_conf.context_length
def calc_parameter_size(self, input_size, output_size):
if self.proj_conf.trainable_padding == False:
return 0
else:
return input_size * self._total_pad
def calc_parameter_dims(self, input_size, output_size):
return [self._total_pad, input_size]
_total_pad = 0
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
type = None # subclass should set it correctly
def __init__(
self,
input_layer_names,
):
self.add_keys(locals())
self.operator_conf = OperatorConfig()
self.operator_conf.type = self.type
def check_dims(self):
pass
def calc_output_size(self, input_sizes):
return 0
@config_class
class DotMulOperator(Operator):
type = 'dot_mul'
def __init__(
self,
input_layer_names,
scale=None,
**xargs):
super(DotMulOperator, self).__init__(
input_layer_names, **xargs)
if scale is not None:
self.operator_conf.dotmul_scale = scale
config_assert(len(input_layer_names) == 2, "DotMul is binary operator")
def check_dims(self):
for i in range(2):
config_assert(self.operator_conf.input_sizes[i] ==
self.operator_conf.output_size,
"DotMul input_size != output_size")
def calc_output_size(self, input_sizes):
return input_sizes[0]
@config_class
class ConvOperator(Operator):
type = 'conv'
def __init__(
self,
input_layer_names,
num_filters=None,
conv_conf=None,
**xargs):
super(ConvOperator, self).__init__(
input_layer_names, **xargs)
if num_filters is not None:
self.operator_conf.num_filters = num_filters
parse_conv(conv_conf, input_layer_names[0], self.operator_conf.conv_conf, True)
self.operator_conf.output_size = (self.operator_conf.conv_conf.output_x ** 2) * num_filters
config_assert(len(input_layer_names) == 2, "Conv is binary operator")
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
def __init__(
self,
filter_size,
channels,
padding = None,
stride = None,
groups = None,
filter_channels = None,
output_x = None,
img_size = None,
caffe_mode = True,
filter_size_y = None,
padding_y = None,
stride_y = None):
self.add_keys(locals())
if filter_size_y is None:
self.filter_size_y = filter_size
if padding_y is None:
self.padding_y = padding
if stride_y is None:
self.stride_y = stride
if output_x is not None:
config_assert(output_x <= 0)
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Pool(Cfg):
def __init__(
self,
pool_type,
channels,
size_x,
size_y = None,
img_width = None,
start = None,
stride = None,
stride_y = None,
padding = None,
padding_y = None):
self.add_keys(locals())
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Norm(Cfg):
def __init__(
self,
norm_type,
channels,
size,
scale,
pow,
output_x = None,
img_size = None,
blocked = None):
self.add_keys(locals())
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Image(Cfg):
def __init__(
self,
channels,
img_size = None):
self.add_keys(locals())
@config_class
class BlockExpand(Cfg):
def __init__(
self,
channels,
padding_x = 0,
padding_y = 0,
stride_x = 0,
stride_y = 0,
block_x = 0,
block_y = 0,
img_size_x = 0,
img_size_y = 0,
output_x = 0,
output_y = 0):
self.add_keys(locals())
def DataBase(async_load_data=False,
constant_slots=None,
data_ratio=1,
is_main_data=True,
usage_ratio=None):
# default: all sub dataproviders are treat as "main data".
# see proto/DataConfig.proto for is_main_data
data_config = DataConfig()
data_config.async_load_data = async_load_data
if constant_slots:
data_config.constant_slots.extend(constant_slots)
data_config.data_ratio=data_ratio
data_config.is_main_data=is_main_data
usage_ratio=default(usage_ratio, settings_deprecated["usage_ratio"])
config_assert(usage_ratio >= 0 and usage_ratio <= 1,
"The range of usage_ratio is [0, 1]")
data_config.usage_ratio = usage_ratio
return data_config
@config_func
def SimpleData(
files=None,
feat_dim=None,
context_len=None,
buffer_capacity=None,
**xargs):
data_config = DataBase(**xargs)
data_config.type = 'simple'
data_config.files = files
data_config.feat_dim = feat_dim
if context_len is not None:
data_config.context_len = context_len
if buffer_capacity:
data_config.buffer_capacity = buffer_capacity
return data_config
@config_func
def PyData(
files=None,
type=None,
file_group_queue_capacity=None,
load_data_module=None,
load_data_object=None,
load_data_args="",
load_file_count=None,
constant_slots=None,
load_thread_num=None,
**xargs):
data_config = DataBase(**xargs)
data_config.type = 'py'
if load_data_module in g_py_module_name_list:
def get_path(module):
m = __import__(load_data_module)
return os.path.split(os.path.realpath(m.__file__))[0]
# python C-api is not thread safe, one module can only be import once,
# so here we nedd to copy the module with different names if it has to be
# imported several times.
module_new_name = "%s_copy_%d" % (load_data_module, len(g_py_module_name_list))
g_py_module_name_list.append(module_new_name)
module_path = "%s/%s.py" % (get_path(load_data_module), load_data_module)
new_module_path = "%s/%s.py" % (get_path(load_data_module), module_new_name)
if os.path.isfile(module_path) == False:
raise Exception("File %s is not exist." % module_path)
shutil.copy2(module_path, new_module_path)
load_data_module = module_new_name
else:
g_py_module_name_list.append(load_data_module)
if load_data_module is not None and load_data_object is not None:
data_config.load_data_module = load_data_module
data_config.load_data_object = load_data_object
else:
raise ValueError('load_data_module, load_data_object is not defined.')
data_config.load_data_args = load_data_args
data_config.files = files or ''
if file_group_queue_capacity is not None:
data_config.file_group_conf.queue_capacity = file_group_queue_capacity
if load_file_count is not None:
data_config.file_group_conf.load_file_count = load_file_count
if load_thread_num is not None:
data_config.file_group_conf.load_thread_num = load_thread_num
if constant_slots:
data_config.constant_slots.extend(constant_slots)
return data_config
@config_func
def ProtoData(
files=None,
type=None,
file_group_queue_capacity=None,
load_file_count=None,
constant_slots=None,
load_thread_num=None,
**xargs):
data_config = DataBase(**xargs)
if type is None:
data_config.type = 'proto'
else:
data_config.type = type
data_config.files = files
# When type="proto_group", one data provider contains at most
# load_file_count files, and there are at most
# (queue_capacity + load_thread_num + 1) data providers in memory
if file_group_queue_capacity is not None:
data_config.file_group_conf.queue_capacity = file_group_queue_capacity
if load_file_count is not None:
data_config.file_group_conf.load_file_count = load_file_count
if load_thread_num is not None:
data_config.file_group_conf.load_thread_num = load_thread_num
if constant_slots:
data_config.constant_slots.extend(constant_slots)
return data_config
#real data for training is actually provided by "sub_data" data providers.
@config_func
def MultiData(
sub_data=[]
):
data_config = DataConfig()
data_config.type = 'multi'
data_config.sub_data_configs.extend(sub_data)
return data_config
@config_func
def Data(
type,
files=None,
feat_dim=None,
slot_dims=None,
context_len=None,
buffer_capacity=None,
**xargs):
data_config = DataBase(**xargs)
data_config.type = type
data_config.files = files
data_config.feat_dim = feat_dim
data_config.slot_dims.extend(slot_dims)
if context_len is not None:
data_config.context_len = context_len
data_config.buffer_capacity = buffer_capacity
return data_config
@config_func
def TrainData(data_config, async_load_data=None):
config_assert(not g_config.HasField('data_config'),
'Only one TrainData definition is allowed')
g_config.data_config.CopyFrom(data_config)
g_config.data_config.for_test = False
if async_load_data is not None:
logger.warning("Deprecated: async_load_data should be used inside"
" Data definition")
g_config.data_config.async_load_data = async_load_data
@config_func
def TestData(data_config, async_load_data=None):
config_assert(not g_config.HasField('test_data_config'),
'Only one TestData definition is allowed')
g_config.test_data_config.CopyFrom(data_config)
g_config.test_data_config.for_test = True
if async_load_data is not None:
logger.warning("Deprecated: async_load_data should be used inside"
" Data definition")
g_config.test_data_config.async_load_data = async_load_data
def parse_pool(pool, input_layer_name, pool_conf):
pool_conf.pool_type = pool.pool_type
config_assert(pool.pool_type in ['max-projection', 'avg-projection',
'cudnn-max-pool', 'cudnn-avg-pool'],
"pool-type %s is not in "
"['max-projection', 'avg-projection', "
"'cudnn-max-pool', 'cudnn-avg-pool']"
% pool.pool_type)
if pool.size_y or pool.stride_y or pool.img_width or pool.padding_y:
config_assert(pool.pool_type.startswith('cudnn'),
"'size_y', 'stride_y' and 'img_width' and 'padding_y'"
"can only be used for cudnn")
pool_conf.channels = pool.channels
pool_conf.size_x = pool.size_x
pool_conf.stride = pool.stride
pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
pool_conf.stride_y = default(pool.stride_y, pool_conf.stride);
img_pixels = g_layer_map[input_layer_name].size / pool.channels
pool_conf.img_size = default(pool.img_width, int(img_pixels ** 0.5))
pool_conf.img_size_y = img_pixels / pool_conf.img_size
config_assert(pool_conf.img_size * pool_conf.img_size_y == img_pixels,
"Incorrect input image size %d for input image pixels %d"
% (pool_conf.img_size, img_pixels))
if pool.start is not None:
config_assert(pool.padding is None,
'At most one of start and padding can be set.')
pool_conf.start = pool.start
pool_conf.padding = 0
pool_conf.output_x = int(math.ceil((pool_conf.img_size - \
pool_conf.start - pool_conf.size_x) / \
float(pool_conf.stride))) + 1
pool_conf.output_y = int(math.ceil((pool_conf.img_size_y - \
pool_conf.start - pool_conf.size_y) / \
float(pool_conf.stride_y))) + 1
elif pool.padding is not None:
pool_conf.padding = pool.padding
pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
pool_conf.start = 0
pool_conf.output_x = int(math.ceil((pool_conf.img_size + \
2*pool_conf.padding - pool_conf.size_x) / \
float(pool_conf.stride))) + 1
pool_conf.output_y = int(math.ceil((pool_conf.img_size_y + \
2*pool_conf.padding_y - pool_conf.size_y) / \
float(pool_conf.stride_y))) + 1
else:
raise ValueError('At least one of start and padding should be set.')
def parse_image(image, input_layer_name, image_conf):
image_conf.channels = image.channels
image_pixels = g_layer_map[input_layer_name].size / image_conf.channels
image_conf.img_size = int(image_pixels ** 0.5)
config_assert((image_conf.img_size ** 2) == image_pixels,
"Incorrect input image size %d for input image pixels %d"
% (image_conf.img_size, image_pixels))
def parse_norm(norm, input_layer_name, norm_conf):
norm_conf.norm_type = norm.norm_type
config_assert(norm.norm_type in ['rnorm', 'cmrnorm-projection'],
"norm-type %s is not in [rnorm, 'cmrnorm-projection']"
% norm.norm_type)
norm_conf.channels = norm.channels
norm_conf.size = norm.size
norm_conf.scale = norm.scale
norm_conf.pow = norm.pow
norm_conf.blocked = norm.blocked
img_pixels = g_layer_map[input_layer_name].size / norm.channels
norm_conf.img_size = int(img_pixels ** 0.5)
config_assert((norm_conf.img_size ** 2) == img_pixels,
"Incorrect input image size %d for input image pixels %d"
% (norm_conf.img_size, img_pixels))
norm_conf.output_x = norm_conf.img_size
if norm.norm_type in ['cmrnorm-projection']:
norm_conf.scale /= norm.size
else:
norm_conf.scale /= norm.size ** 2
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
def parse_conv(conv, input_layer_name, conv_conf):
conv_conf.filter_size = conv.filter_size
conv_conf.filter_size_y = conv.filter_size_y
conv_conf.channels = conv.channels
conv_conf.padding = conv.padding
conv_conf.padding_y = conv.padding_y
conv_conf.stride = conv.stride
conv_conf.stride_y = conv.stride_y
conv_conf.groups = conv.groups
conv_conf.filter_channels = conv.channels / conv.groups
conv_conf.caffe_mode = conv.caffe_mode
img_pixels = g_layer_map[input_layer_name].size / conv.channels
print('channels=%d size=%d'%(conv.channels,
g_layer_map[input_layer_name].size))
conv_conf.img_size = int(img_pixels ** 0.5)
config_assert((conv_conf.img_size ** 2) == img_pixels,
("Input layer %s: Incorrect input image size %d for input "
+ "image pixels %d")
% (input_layer_name, conv_conf.img_size, img_pixels))
if conv.caffe_mode:
conv_conf.output_x = \
1 + int(math.floor((2 * conv.padding + conv_conf.img_size \
- conv.filter_size) / float(conv.stride)))
else:
conv_conf.output_x = \
1 + int(math.ceil((2 * conv.padding + conv_conf.img_size \
- conv.filter_size) / float(conv.stride)))
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
block_expand_conf.channels = block_expand.channels
block_expand_conf.stride_x = block_expand.stride_x
block_expand_conf.stride_y = block_expand.stride_y
block_expand_conf.padding_x = block_expand.padding_x
block_expand_conf.padding_y = block_expand.padding_y
block_expand_conf.block_x = block_expand.block_x
block_expand_conf.block_y = block_expand.block_y
block_expand_conf.img_size_x = block_expand.img_size_x
block_expand_conf.img_size_y = block_expand.img_size_y
if block_expand_conf.img_size_x == 0:
block_expand_conf.output_x = 0
else:
block_expand_conf.output_x = \
1 + \
int(math.ceil((2 * block_expand.padding_x + block_expand.img_size_x \
- block_expand.block_x) / float(block_expand.stride_x)))
if block_expand_conf.img_size_y == 0:
block_expand_conf.output_y = 0
else:
block_expand_conf.output_y = \
1 + \
int(math.ceil((2 * block_expand.padding_y + block_expand.img_size_y \
- block_expand.block_y) / float(block_expand.stride_y)))
# Define an evaluator
@config_func
def Evaluator(
name,
type,
inputs,
chunk_scheme = None,
num_chunk_types = None,
classification_threshold = 0.5,
positive_label = -1,
dict_file = "",
result_file = "",
num_results = 1,
delimited = True,
):
evaluator = g_config.model_config.evaluators.add()
evaluator.type = type
evaluator.name = MakeLayerNameInSubmodel(name)
if type_of(inputs) == str:
inputs = [inputs]
evaluator.input_layers.extend(
[MakeLayerNameInSubmodel(name) for name in inputs])
if chunk_scheme is not None:
evaluator.chunk_scheme = chunk_scheme
evaluator.num_chunk_types = num_chunk_types
g_current_submodel.evaluator_names.append(evaluator.name)
evaluator.classification_threshold = classification_threshold
evaluator.positive_label = positive_label
evaluator.dict_file = dict_file
evaluator.result_file = result_file
evaluator.num_results = num_results
evaluator.delimited = delimited
class LayerBase(object):
def __init__(
self,
name,
type,
size, # size can be 0. In this case, subclass should set it.
inputs,
device=None,
active_type="",
drop_rate=0.,
coeff=1.):
config_assert('@' not in name,
"layer name: %s contain special character @" % name)
global g_current_submodel
name = MakeLayerNameInSubmodel(name)
config_assert(name not in g_layer_map,
'Duplicated layer name: %s' % name)
self.inputs = copy.deepcopy(inputs)
self.operators = []
if self.inputs is None:
self.inputs = []
elif type_of(self.inputs) != list:
self.inputs = [self.inputs]
self.config = g_config.model_config.layers.add()
self.config.name = name
self.config.type = type
self.config.active_type = active_type
self.config.coeff = coeff
if size != 0:
self.config.size = size
if drop_rate != 0:
self.config.drop_rate = drop_rate
if device is not None:
self.config.device = device
else:
self.config.device = g_default_device
for input_index in xrange(len(self.inputs)):
input = self.inputs[input_index]
input_config = None
input_layer_name = ''
if type_of(input) == str:
input_layer_name = input
input_config = Input(
input_layer_name = input,
parameter_name = gen_parameter_name(name, input_index))
input_layer_name = input_config.input_layer_name
elif isinstance(input, Input):
input_layer_name = input.input_layer_name
input_config = input
if input_config.parameter_name is None:
input_config.parameter_name = \
gen_parameter_name(name, input_index)
elif isinstance(input, Operator):
self.operators.append(input);
input.operator_conf.input_indices.append(input_index)
input_config = Input(input.input_layer_names[0])
input_layer_name = input_config.input_layer_name
else:
raise ValueError(
'Wrong type for inputs: %s' % type_of(input))
config_assert(input_layer_name in g_layer_map,
"Unknown input layer '%s' for layer %s"
% (input_layer_name, name))
self.inputs[input_index] = input_config
layer_input = self.config.inputs.add()
layer_input.input_layer_name = input_config.input_layer_name
if input_config.input_layer_argument is not None:
layer_input.input_layer_argument = \
input_config.input_layer_argument
g_layer_map[name] = self.config
g_current_submodel.layer_names.append(self.config.name)
def get_input_layer(self, input_index):
return g_layer_map[self.config.inputs[input_index].input_layer_name]
# will return the bias created if not *for_self*
def create_bias_parameter(
self,
bias, # True/False or BiasCfg
size,
dims = None,
for_self = True, # whether create bias for layer self
):
if size == 0:
return
if dims is None:
dims = [1, size]
config_assert(type_of(bias) == bool or type_of(bias) == Bias,
'Incorrect type for bias: %s' % type_of(bias))
if type_of(bias) == bool:
if bias:
bias = Bias()
if type_of(bias) == Bias:
if bias.parameter_name is None:
bias.parameter_name = gen_bias_parameter_name(self.config.name)
if bias.parameter_name not in g_parameter_map:
Parameter(
bias.parameter_name,
size,
self.config.device,
dims,
bias.learning_rate,
bias.momentum,
decay_rate=bias.decay_rate,
decay_rate_l1=bias.decay_rate_l1,
initial_mean=bias.initial_mean,
initial_std=bias.initial_std,
initial_strategy=bias.initial_strategy,
initial_smart=bias.initial_smart,
num_batches_regularization=bias.num_batches_regularization,
sparse_remote_update=bias.sparse_remote_update,
gradient_clipping_threshold=bias.gradient_clipping_threshold,
is_static=bias.is_static,
is_shared=bias.is_shared,
)
if for_self:
self.config.bias_parameter_name = bias.parameter_name
else:
return bias.parameter_name
def create_input_parameter(
self,
input_index,
size,
dims=None,
sparse = False,
format = "csr"):
if dims is None:
# TODO(yuyang18): print warning and callstack here!
dims = list()
if size == 0:
return
input_config = self.inputs[input_index]
self.config.inputs[input_index].input_parameter_name = \
input_config.parameter_name
if input_config.parameter_name in g_parameter_map:
para = g_parameter_map[input_config.parameter_name]
config_assert(size == para.size, ('Shared parameter "%s" does not '
+ 'have same size: %s vs. %s')
% (input_config.parameter_name, para.size, size))
config_assert(dims == para.dims, ('Shared parameter "%s" does not '
+ 'have same dims: %s vs. %s')
% (input_config.parameter_name, para.dims, dims))
return
Parameter(
input_config.parameter_name,
size,
self.config.device,
dims,
input_config.learning_rate,
input_config.momentum,
decay_rate=input_config.decay_rate,
decay_rate_l1=input_config.decay_rate_l1,
initial_mean=input_config.initial_mean,
initial_std=input_config.initial_std,
initial_strategy=input_config.initial_strategy,
initial_smart=input_config.initial_smart,
num_batches_regularization=input_config.num_batches_regularization,
sparse_remote_update=input_config.sparse_remote_update,
sparse_update=input_config.sparse_update,
gradient_clipping_threshold=input_config.gradient_clipping_threshold,
sparse=sparse,
format=format,
is_static=input_config.is_static,
is_shared=input_config.is_shared,
update_hooks=input_config.update_hooks
)
def set_layer_size(self, size):
if self.config.size == 0:
self.config.size = size
else:
config_assert(self.config.size == size,
'Different inputs result in' +
'different layer size at layer %s' % self.config.name)
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
def __init__(
self,
name,
inputs,
softmax_selfnorm_alpha=0.1,
**xargs):
super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(name,
'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha
@config_layer('fc')
class FCLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
bias=True,
**xargs):
super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
psize = self.config.size * input_layer.size
dims = [input_layer.size, self.config.size]
format = self.inputs[input_index].format
sparse = format == "csr" or format == "csc"
if sparse:
psize = self.inputs[input_index].nnz
self.create_input_parameter(input_index, psize, dims, sparse, format)
self.create_bias_parameter(bias, self.config.size)
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
bias=True,
selective_fc_pass_generation=False,
has_selected_colums=True,
selective_fc_full_mul_ratio=0.02,
selective_fc_parallel_plain_mul_thread_num=None,
**xargs):
super(SelectiveFCLayer, self).__init__(
name, 'selective_fc', size, inputs=inputs, **xargs)
# user MUST know if selctive fc is used in training,
# parameter matrices saved by this layer are automatically transposed,
# BUT bias is not.
# if selective_fc is used only in testing mode, and parameters for
# this layer are trained by fully connected layers,
# then TranposedFullMatrixProjectin MUST be used in training
# to avoid manual transpose in testing.
self.config.selective_fc_pass_generation = selective_fc_pass_generation
self.config.has_selected_colums = has_selected_colums
self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
if selective_fc_parallel_plain_mul_thread_num is not None:
self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num
input_num = len(self.inputs)
if has_selected_colums:
config_assert(input_num >= 2,
("if indices of selected columns are not specified, "
"selective_fc Layer has at least two inputs"))
input_num -= 1
for input_index in xrange(input_num):
input_layer = self.get_input_layer(input_index)
psize = self.config.size * input_layer.size
dims = [input_layer.size, self.config.size]
dims = dims[::-1] # transpose the parameter
format = self.inputs[input_index].format
sparse = format == "csr" or format == "csc"
if sparse:
psize = self.inputs[input_index].nnz
self.create_input_parameter(
input_index, psize, dims, sparse, format)
self.create_bias_parameter(bias, self.config.size)
@config_layer('data')
class DataLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
super(DataLayer, self).__init__(name, 'data' , size, inputs=[], device=device)
'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
be DataLayer with dense data type
Output: The normalization of the input data
Reference:
LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine
Example:
Layer(
name = "norm_input_layer",
type = "data_norm",
inputs = [Input("input_layer",
parameter_name = "_slot0.stats")],
data_norm_strategy = "z-score",
)
Note:
(1) The parameter has been calculated in the preprocessing stage,
and should be initialized by --init_model_path when training.
(2) Three data normalization methoeds are considered
z-score: y = (x-mean)/std
min-max: y = (x-min)/(max-min)
decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
@config_layer('data_norm')
class DataNormLayer(LayerBase):
def __init__(
self,
name,
inputs,
data_norm_strategy="z-score",
device=None):
super(DataNormLayer, self).__init__(
name, 'data_norm', 0, inputs=inputs, device=device)
self.config.data_norm_strategy = data_norm_strategy
config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
input_layer = self.get_input_layer(0)
self.set_layer_size(input_layer.size)
para_size = 5 * input_layer.size
para_dims = [5, input_layer.size]
self.inputs[0].is_static = True
self.create_input_parameter(0, para_size, para_dims)
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
layer_type = 'prelu'
def __init__(
self,
name,
inputs,
partial_sum = 1,
**args):
super(ParameterReluLayer, self).__init__(
name, self.layer_type, 0, inputs=inputs, **args)
config_assert(len(self.inputs) == 1)
config_assert(self.input_layer.size % partial_sum == 0)
input_layer = self.get_input_layer(0)
self.set_layer_size(input_layer.size)
self.create_input_parameter(0, input_layer.size / partial_sum)
@config_layer('conv')
class ConvLayerBase(LayerBase):
layer_type = 'conv'
def __init__(
self,
name,
inputs=[],
bias=True,
num_filters=None,
shared_biases=False,
**xargs):
super(ConvLayerBase, self).__init__(
name, self.layer_type, 0, inputs=inputs, **xargs)
if num_filters is not None:
self.config.num_filters = num_filters
use_gpu = int(g_command_config_args.get("use_gpu", 0))
parallel_nn = int(g_command_config_args.get("parallel_nn", 0))
# Automatically select cudnn_type for GPU and exconv for CPU
# if set type=conv, but still reserve the way user specify
# exconv or cudnn_conv manually.
if self.layer_type == "cudnn_conv":
config_assert(use_gpu, "cudnn_conv only support GPU")
if (use_gpu == 1 and self.layer_type != "exconv" and
(parallel_nn == 0 or self.config.device > -1)):
self.layer_type = "cudnn_conv"
else:
self.layer_type = "exconv"
# need to specify layer in config
self.config.type = self.layer_type
if shared_biases is not None:
self.config.shared_biases = shared_biases
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
parse_conv(
self.inputs[input_index].conv,
input_layer.name,
self.config.inputs[input_index].conv_conf)
conv_conf = self.config.inputs[input_index].conv_conf
psize = self.calc_parameter_size(conv_conf)
print("output size for %s is %d " % (name, conv_conf.output_x))
self.create_input_parameter(input_index, psize)
self.set_layer_size(
(conv_conf.output_x ** 2) * self.config.num_filters)
psize = self.config.size
if shared_biases:
psize = self.config.num_filters
self.create_bias_parameter(bias, psize, [psize, 1])
def calc_parameter_size(self, conv_conf):
return self.config.num_filters * conv_conf.filter_channels \
* (conv_conf.filter_size * conv_conf.filter_size_y)
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
layer_type = 'exconv'
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
layer_type = 'cudnn_conv'
@config_layer('norm')
class NormLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, device=device)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
parse_norm(
self.inputs[input_index].norm,
input_layer.name,
self.config.inputs[input_index].norm_conf)
norm_conf = self.config.inputs[input_index].norm_conf
self.set_layer_size((norm_conf.output_x ** 2) * norm_conf.channels)
@config_layer('pool')
class PoolLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, device=device)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
parse_pool(
self.inputs[input_index].pool,
input_layer.name,
self.config.inputs[input_index].pool_conf)
pool_conf = self.config.inputs[input_index].pool_conf
print("output size for %s is %d*%d " % (
name, pool_conf.output_y, pool_conf.output_x))
self.set_layer_size((pool_conf.output_x ** 2) * pool_conf.channels)
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
layer_type = 'batch_norm'
def __init__(
self,
name,
inputs,
active_type="linear",
bias=True,
device=None,
use_global_stats=True,
moving_average_fraction=0.9,
batch_norm_type=None,
**xargs):
if inputs is None:
inputs = []
elif not isinstance(inputs, list):
inputs = [inputs]
config_assert(len(inputs) == 1,
"BatchNormLayer must have one and only one input")
# Create Input for moving mean and std,
# in batch normalization layer.
# These paras no need to update, so set is_static is true.
# If not use is_static, even set learning_rate = 0, decay_rate = 0,
# these paras will change if set average_window in configure.
use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
is_shared = True if not use_gpu else False
for i in xrange(2):
inputs.append(Input(inputs[0].input_layer_name,
initial_std=0.0,
initial_mean=0.0,
is_static=True,
is_shared=is_shared,
))
parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
# Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
# Also based on cudnn version.
use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
((not parallel_nn) or self.config.device > -1) and \
cudnn_version >= 4000
self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
super(BatchNormLayer, self).__init__(name, self.layer_type, 0,
active_type=active_type,
inputs=inputs, device=device, **xargs)
if use_global_stats is not None:
self.config.use_global_stats = use_global_stats
if moving_average_fraction is not None:
self.config.moving_average_fraction = moving_average_fraction
input_layer= self.get_input_layer(0)
parse_image(self.inputs[0].image,
input_layer.name,
self.config.inputs[0].image_conf)
image_conf = self.config.inputs[0].image_conf
self.set_layer_size((image_conf.img_size ** 2) * image_conf.channels)
psize = self.calc_parameter_size(image_conf)
dims = [1, psize]
self.create_input_parameter(0, psize)
self.create_input_parameter(1, psize, dims)
self.create_input_parameter(2, psize, dims)
self.create_bias_parameter(bias, psize)
def calc_parameter_size(self, image_conf):
return image_conf.channels
@config_layer('trans')
class TransLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(TransLayer, self).__init__(name, 'trans', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1,
'TransLayer must have one and only one input')
self.set_layer_size(self.get_input_layer(0).size)
@config_layer('resize')
class ResizeLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
device=None):
super(ResizeLayer, self).__init__(name, 'resize', size=size, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1,
'ResizeLayer must have one and only one input')
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(BlockExpandLayer, self).__init__(name, 'blockexpand', 0, inputs=inputs, device=device)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
parse_block_expand(self.inputs[input_index].block_expand,
input_layer.name,
self.config.inputs[input_index].block_expand_conf)
block_expand_conf = self.config.inputs[input_index].block_expand_conf
self.set_layer_size(block_expand_conf.block_x * block_expand_conf.block_y
* block_expand_conf.channels)
# key: cost type
# value: cost class
g_cost_map = {}
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
def init(cls, name, inputs, device=None, coeff=1.):
super(type(cls), cls).__init__(name, cost_type, 1, inputs, device=device, coeff=coeff)
cls = type(class_name, (LayerBase,), dict(__init__=init))
global g_cost_map
g_cost_map[cost_type] = cls
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('ClassificationErrorLayer', 'classification_error')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
def __init__(
self,
name,
num_classes,
inputs,
device=None,
bias=True):
super(HierarchicalSigmoidLayer, self).__init__(
name, 'hsigmoid', 1, inputs=inputs, device=device)
config_assert(len(self.inputs) >= 2,
'HierarchicalSigmoidLayer must have at least 2 inputs')
self.config.num_classes = num_classes
for input_index in xrange(len(self.inputs) - 1):
input_layer = self.get_input_layer(input_index)
psize = (num_classes - 1) * input_layer.size
dims = [num_classes - 1, input_layer.size]
self.create_input_parameter(input_index, psize, dims)
self.create_bias_parameter(bias, num_classes - 1)
'''
lambdaCost for lambdaRank LTR approach
Usage:
Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
max_sort_size = -1, inputs = ["output", "score"])
Input data: Samples of the same query should be loaded as a sequence,
by ProtoDataProvider or PyDataProvider etc.. User should provide
scores for each sample. The score slot should be the 2nd
input of lambdaRank layer.
NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
Note: NDCG_num must be less than or equal to the minimum
size of lists.
max_sort_size = the size of partial sorting in calculating gradient.
Note: If max_sort_size = -1, then for each list, the algorithm will
sort the entire list to get gradient.
In other cases, max_sort_size must be greater than or equal
to NDCG_num.
max_sort_size can be greater than the size of a list, in which
case the algorithm will sort the entire list to get gradient.
'''
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
def __init__(
self,
name,
inputs,
NDCG_num = 5,
max_sort_size = -1,
device=None):
super(LambdaCost, self).__init__(
name, 'lambda_cost', 1, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2,
'lambdaCost must have 2 inputs')
self.config.NDCG_num = NDCG_num
if max_sort_size != -1:
config_assert(NDCG_num <= max_sort_size,
'NDCG_num must be less than or equal to max_sort_size')
self.config.max_sort_size = max_sort_size
@config_layer('nce')
class NCELayer(LayerBase):
def __init__(
self,
name,
num_classes,
inputs,
num_neg_samples=10,
neg_sampling_dist=None,
bias=True,
**xargs):
super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
config_assert(len(self.inputs) >= 2,
'NCELayer must have at least 2 inputs')
self.config.num_classes = num_classes
if neg_sampling_dist is not None:
config_assert(len(neg_sampling_dist) == num_classes,
'len(neg_sampling_dist)(%s) is not same as num_classes (%s)'
% (len(neg_sampling_dist), num_classes))
s = sum(neg_sampling_dist)
config_assert(abs(s - 1) < 1e-5,
'The sum of neg_sampling_dist (%s) is not 1' % s)
self.config.neg_sampling_dist.extend(neg_sampling_dist)
self.config.num_neg_samples = num_neg_samples
num_real_inputs = len(self.inputs) - 1
input_layer = self.get_input_layer(num_real_inputs)
config_assert(input_layer.type == 'data',
'Expecting the last input layer of an nce layer to be '
'a data layer')
if (num_real_inputs > 1 and input_layer.size == 1
and self.get_input_layer(num_real_inputs - 1).type == 'data'):
# This input layer is assumed to be a sample weight layer
num_real_inputs -= 1
for input_index in xrange(num_real_inputs):
input_layer = self.get_input_layer(input_index)
psize = num_classes * input_layer.size
dims = [num_classes, input_layer.size]
self.create_input_parameter(input_index, psize, dims)
self.create_bias_parameter(bias, num_classes)
@config_layer('addto')
class AddToLayer(LayerBase):
def __init__(
self,
name,
inputs,
bias=True,
**xargs):
super(AddToLayer, self).__init__(
name, 'addto', 0, inputs=inputs, **xargs)
config_assert(len(inputs) > 0,
'inputs cannot be empty for AddToLayer')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('agent')
class AgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
super(AgentLayer, self).__init__(name, 'agent', size, inputs=[], device=device)
@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
super(SequenceAgentLayer, self).__init__(
name, 'sequence_agent', size, inputs=[], device=device)
@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
super(GatherAgentLayer, self).__init__(
name, 'gather_agent', size, inputs=[], device=device)
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
super(ScatterAgentLayer, self).__init__(
name, 'scatter_agent', size, inputs=[], device=device)
@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
super(SequenceGatherAgentLayer, self).__init__(
name, 'sequence_gather_agent', size, inputs=[], device=device)
@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
def __init__(
self,
name,
size,
device=None):
super(SequenceScatterAgentLayer, self).__init__(
name, 'sequence_scatter_agent', size, inputs=[], device=device)
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
def __init__(
self,
name,
inputs,
size,
device=None):
super(MultiplexLayer, self).__init__(name, 'multiplex', size, inputs=inputs, device=device)
config_assert(len(inputs) > 2,
'MultiplexLayer should have more than 2 inputs.')
for i in range(1, len(inputs)):
config_assert(self.get_input_layer(i).size == size,
"All the input layers except the first one should"
"have the same size as the MultiplexLayer.")
@config_func
def Link(name,
has_subseq=False,
):
link_config = LinkConfig()
link_config.link_name = name
link_config.has_subseq = has_subseq
return link_config
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
# will return name of the memory,
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
def Memory(name,
size,
is_sequence=False,
boot_layer=None,
boot_bias=False,
boot_bias_active_type="",
boot_with_const_id=None,
):
agent_name = name + "+delay1"
if is_sequence:
agent_layer = SequenceAgentLayer(agent_name, size)
else:
agent_layer = AgentLayer(agent_name, size)
config_assert(g_current_submodel.is_recurrent_layer_group,
'Memory should be used in recurrent layer group only')
memory = g_current_submodel.memories.add()
memory.layer_name = MakeLayerNameInSubmodel(name)
memory.link_name = MakeLayerNameInSubmodel(agent_name)
memory.is_sequence = is_sequence
options = sum((boot_layer is not None,
bool(boot_bias),
boot_with_const_id is not None))
config_assert(options <= 1,
'take one option at most from boot_layer, boot_bias, or boot_with_const_id')
if boot_layer is not None:
boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
config_assert(boot_layer in g_layer_map,
'boot_layer "%s" does not correspond to a layer name' % boot_layer)
memory.boot_layer_name = boot_layer
elif boot_bias:
memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
boot_bias, size, for_self = False)
memory.boot_bias_active_type = boot_bias_active_type
elif boot_with_const_id is not None:
memory.boot_with_const_id = boot_with_const_id
return agent_name
# Generator for recurrent layer group, to use it:
# 1. define a id layer as output of layer group
# 2. define a memory of this id layer, and assign a boot id(begin of sequence)
# 3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
# in beam search, if *num_results_per_sample* set, one sample sequence can output
# multiple results each with a probility.
@config_func
def Generator(
max_num_frames,
eos_layer_name = "eos_check",
num_results_per_sample = 1,
beam_size = 1,
log_prob = None,
):
generator_config = GeneratorConfig()
generator_config.max_num_frames = max_num_frames
generator_config.eos_layer_name = eos_layer_name
generator_config.num_results_per_sample = num_results_per_sample
generator_config.beam_size = beam_size
if log_prob is not None:
generator_config.log_prob = log_prob
return generator_config
@config_layer('expand')
class ExpandLayer(LayerBase):
def __init__(
self,
name,
inputs,
trans_type='non-seq',
device=None,
bias=False):
super(ExpandLayer, self).__init__(
name, 'expand', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2,
'ExpandLayer takes 2 and only 2 inputs')
self.config.trans_type = trans_type
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(self.get_input_layer(0).size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None,
num_filters=None,
bias=False):
super(FeatMapExpandLayer, self).__init__(
name, 'featmap_expand', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1,
'ExpandLayer takes 1 and only 1 inputs')
if num_filters is not None:
self.config.num_filters = num_filters
else:
logger.fatal("FeatMapExpandLayer must specify num_filters.")
self.set_layer_size(self.get_input_layer(0).size * num_filters)
@config_layer('max')
class MaxLayer(LayerBase):
def __init__(
self,
name,
inputs,
trans_type='non-seq',
active_type='linear',
device=None,
bias=False,
output_max_index=False):
super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
self.config.trans_type = trans_type
self.config.active_type = active_type
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.create_bias_parameter(bias, self.config.size)
self.config.output_max_index=output_max_index
@config_layer('maxid')
class MaxIdLayer(LayerBase):
def __init__(
self,
name,
inputs,
beam_size=None,
device=None):
super(MaxIdLayer, self).__init__(
name, 'maxid', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
if beam_size is None:
global g_current_submodel
if g_current_submodel.HasField("generator"):
self.config.beam_size = g_current_submodel.generator.beam_size
else:
self.config.beam_size = beam_size
@config_layer('eos_id')
class EosIdLayer(LayerBase):
def __init__(
self,
name,
inputs,
eos_id,
device=None):
super(EosIdLayer, self).__init__(
name, 'eos_id', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
self.set_layer_size(2) # boolean output
self.config.eos_id = eos_id
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
def __init__(
self,
name,
inputs,
active_type='linear',
trans_type='non-seq',
device=None,
bias=False):
super(SequenceLastInstanceLayer, self).__init__(name, 'seqlastins',
0, inputs=inputs, device=device, active_type=active_type)
config_assert(len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
self.config.trans_type = trans_type
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
def __init__(
self,
name,
inputs,
active_type='linear',
trans_type='non-seq',
device=None,
bias=False,
):
super(SequenceFirstInstanceLayer, self).__init__(name,
inputs=inputs, active_type=active_type, device=device, bias=bias)
self.config.trans_type = trans_type
self.config.select_first = True
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
def __init__(
self,
name,
inputs,
active_type='linear',
device=None,
bias=False):
super(SequenceConcatLayer, self).__init__(name, 'seqconcat',
0, inputs=inputs, device=device, active_type=active_type)
config_assert(len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
active_type='linear',
device=None,
bias=False):
super(SequenceReshapeLayer, self).__init__(name, 'seqreshape',
size, inputs=inputs, device=device, active_type=active_type)
config_assert(len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
self.set_layer_size(size)
self.create_bias_parameter(bias, size)
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
def __init__(
self,
name,
inputs,
active_type='linear',
device=None,
bias=False):
super(SubSequenceLayer, self).__init__(name, 'subseq',
0, inputs=inputs, device=device, active_type=active_type)
config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
input_layer0 = self.get_input_layer(0)
size = input_layer0.size
self.set_layer_size(size)
self.create_bias_parameter(bias, size)
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(OuterProdLayer, self).__init__(name, 'out_prod',
0, inputs=inputs, device=device)
config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
self.set_layer_size(input_layer0.size * input_layer1.size)
@config_layer('power')
class PowerLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(PowerLayer, self).__init__(name, 'power',
0, inputs=inputs, device=device)
config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
input_layer1 = self.get_input_layer(1)
self.set_layer_size(input_layer1.size)
input_layer0 = self.get_input_layer(0)
config_assert(1==input_layer0.size,
'The left input is the exponent and should be of size 1')
@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
def __init__(
self,
name,
inputs,
slope=1.0,
intercept=0.0,
device=None):
super(SlopeInterceptLayer, self).__init__(name, 'slope_intercept',
0, inputs=inputs, device=device)
self.config.slope = slope
self.config.intercept = intercept
config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
input_layer0 = self.get_input_layer(0)
self.set_layer_size(input_layer0.size)
@config_layer('scaling')
class ScalingLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(ScalingLayer, self).__init__(name, 'scaling',
0, inputs=inputs, device=device)
config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
input_layer1 = self.get_input_layer(1)
self.set_layer_size(input_layer1.size)
input_layer0 = self.get_input_layer(0)
config_assert(1==input_layer0.size,
'The left input should be of size 1')
@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(ConvShiftLayer, self).__init__(name, 'conv_shift',
0, inputs=inputs, device=device)
config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
input_layer0 = self.get_input_layer(0)
self.set_layer_size(input_layer0.size)
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
device=None):
super(ConvexCombinationLayer, self).__init__(
name, 'convex_comb', size, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2,
'ConvexCombinationLayer must have 2 inputs')
self.set_layer_size(size)
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(InterpolationLayer, self).__init__(
name, 'interpolation', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 3,
'InterpolationLayer must have 3 inputs')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
input_layer2 = self.get_input_layer(2)
self.set_layer_size(input_layer1.size)
config_assert(input_layer0.size == 1, 'weight should be of size 1')
config_assert(input_layer1.size == input_layer2.size,
'the two vector inputs should be of the same size')
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(SumToOneNormLayer, self).__init__(
name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1,
'SumToOneNormLayer must have 1 input')
input_layer0 = self.get_input_layer(0)
self.set_layer_size(input_layer0.size)
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
cos_scale=1.0,
device=None):
super(CosSimVecMatLayer, self).__init__(
name, 'cos_vm', size, inputs=inputs, device=device)
self.config.cos_scale = cos_scale
config_assert(len(self.inputs) == 2,
'CosSimVecMatLayer must have 2 inputs')
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(SamplingIdLayer, self).__init__(
name, 'sampling_id', 0, inputs=inputs, device=device)
config_assert(len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
def __init__(
self,
name,
inputs,
average_strategy='average',
trans_type='non-seq',
active_type='linear',
device=None,
bias=False):
super(AverageLayer, self).__init__(name, 'average', 0, inputs=inputs,
device=device, active_type=active_type)
self.config.average_strategy = average_strategy
self.config.trans_type = trans_type
config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.create_bias_parameter(bias, self.config.size)
@config_layer('cos')
class CosSimLayer(LayerBase):
def __init__(
self,
name,
inputs,
device=None):
super(CosSimLayer, self).__init__(
name, 'cos', 1, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
config_assert(
self.get_input_layer(0).size == self.get_input_layer(1).size,
'inputs of CosSimLayer must have same dim')
@config_layer('tensor')
class TensorLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
device=None,
bias=True,
**xargs):
super(TensorLayer, self).__init__(name, 'tensor', size, inputs=inputs, device=device, **xargs)
config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
config_assert(size > 0, 'size must be positive')
config_assert(inputs[1].parameter_name == None, 'second parameter should be None.')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
psize = size * input_layer0.size * input_layer1.size
dims = [input_layer0.size, input_layer1.size, size]
self.create_input_parameter(0, psize, dims)
self.create_bias_parameter(bias, size)
@config_layer('mixed')
class MixedLayer(LayerBase):
def __init__(
self,
name,
inputs,
size=0,
bias=True,
error_clipping_threshold=0.0,
**xargs):
config_assert(inputs, 'inputs cannot be empty')
super(MixedLayer, self).__init__(
name, 'mixed', size, inputs=inputs, **xargs)
operator_input_index = []
for operator in self.operators:
operator_conf = operator.operator_conf
for i in xrange(1, len(operator.input_layer_names)):
input_index = len(self.config.inputs)
operator_conf.input_indices.append(input_index)
input_config = Input(operator.input_layer_names[i])
self.inputs.append(input_config)
layer_input = self.config.inputs.add()
layer_input.input_layer_name = input_config.input_layer_name
for input_index in operator_conf.input_indices:
input_layer = self.get_input_layer(input_index)
operator_conf.input_sizes.append(input_layer.size)
operator_input_index.append(input_index)
if self.config.size == 0:
size = operator.calc_output_size(operator_conf.input_sizes)
if size != 0:
self.set_layer_size(size)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
input = self.inputs[input_index]
if input_index not in operator_input_index:
config_assert(isinstance(input, Projection), "input should be projection or operation")
if self.config.size == 0 and isinstance(input, Projection):
size = input.calc_output_size(input_layer)
if size != 0:
self.set_layer_size(size)
config_assert(size != 0, "size is not set")
for input_index in xrange(len(self.inputs)):
input = self.inputs[input_index]
if isinstance(input, Projection):
input_layer = self.get_input_layer(input_index)
input.proj_conf.input_size = input_layer.size
input.proj_conf.output_size = size
input_config = self.config.inputs[input_index]
input_config.proj_conf.CopyFrom(input.proj_conf)
input_config.proj_conf.name = gen_parameter_name(name, input_index)
psize = input.calc_parameter_size(input_layer.size, size)
dims = input.calc_parameter_dims(input_layer.size, size)
self.create_input_parameter(input_index, psize, dims)
for operator in self.operators:
operator_conf = operator.operator_conf
operator_conf.output_size = self.config.size
operator.check_dims()
record_operator_conf = self.config.operator_confs.add()
record_operator_conf.CopyFrom(operator_conf)
self.create_bias_parameter(bias, self.config.size)
self.config.error_clipping_threshold = error_clipping_threshold
# like MixedLayer, but no bias parameter
@config_func
def ExpressionLayer(name,
inputs,
**xargs):
MixedLayer(name, inputs, bias=False, **xargs)
@config_layer('concat')
class ConcatenateLayer(LayerBase):
def __init__(
self,
name,
inputs,
**xargs):
config_assert(inputs, 'inputs cannot be empty')
super(ConcatenateLayer, self).__init__(
name, 'concat', 0, inputs=inputs, **xargs)
size = 0
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
input = self.inputs[input_index]
if self.config.size == 0:
size += input_layer.size
self.set_layer_size(size)
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
def __init__(
self,
name,
inputs,
**xargs):
config_assert(inputs, 'inputs cannot be empty')
super(ConcatenateLayer2, self).__init__(
name, 'concat2', 0, inputs=inputs, **xargs)
size = 0
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
input = self.inputs[input_index]
output_size = input.calc_output_size(input_layer)
config_assert(output_size != 0, "proj output size is not set")
size += output_size
self.set_layer_size(size)
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
input = self.inputs[input_index]
input.proj_conf.input_size = input_layer.size
input.proj_conf.output_size = input.calc_output_size(input_layer)
input_config = self.config.inputs[input_index]
input_config.proj_conf.CopyFrom(input.proj_conf)
input_config.proj_conf.name = gen_parameter_name(name, input_index)
psize = input.calc_parameter_size(input.proj_conf.input_size,
input.proj_conf.output_size)
dims = input.calc_parameter_dims(input.proj_conf.input_size,
input.proj_conf.output_size)
self.create_input_parameter(input_index, psize, dims)
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
def __init__(
self,
name,
inputs,
reversed=False,
bias=True,
**xargs):
super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs, **xargs)
config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
input_layer = self.get_input_layer(0)
size = input_layer.size
self.set_layer_size(size)
self.config.reversed = reversed
dims = [size, size]
self.create_input_parameter(0, size * size, dims)
self.create_bias_parameter(bias, self.config.size)
@config_layer('lstmemory')
class LstmLayer(LayerBase):
def __init__(
self,
name,
inputs,
reversed=False,
active_gate_type="sigmoid",
active_state_type="sigmoid",
bias=True,
**xargs):
super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
input_layer = self.get_input_layer(0)
#check input_layer.size is divided by 4
config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
size = input_layer.size / 4
self.set_layer_size(size)
self.config.reversed = reversed
self.config.active_gate_type = active_gate_type
self.config.active_state_type = active_state_type
self.create_input_parameter(0, size * size * 4, [size, size, 4])
#bias includes 3 kinds of peephole, 4 + 3 = 7
self.create_bias_parameter(bias, size * 7)
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
active_gate_type="sigmoid",
active_state_type="sigmoid",
bias=True,
**xargs):
super(LstmStepLayer, self).__init__(name, 'lstm_step',
size, inputs, **xargs)
config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
config_assert(input_layer0.size == 4 * size, 'input_layer0.size != 4 * layer.size')
config_assert(input_layer1.size == size, 'input_layer1.size != layer.size')
self.config.active_gate_type = active_gate_type
self.config.active_state_type = active_state_type
self.create_bias_parameter(bias, size * 3)
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
def __init__(
self,
name,
size,
inputs):
super(GetOutputLayer, self).__init__(name, 'get_output' , size, inputs)
config_assert(len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
inputs = self.inputs[0]
config_assert(inputs.input_layer_argument,
'input_layer_argument cannot be empty')
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
def __init__(
self,
name,
inputs,
directions=True,
active_gate_type="sigmoid",
active_state_type="sigmoid",
bias=True,
**xargs):
super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs, **xargs)
config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
input_layer = self.get_input_layer(0)
dim_num = len(directions)
#check input_layer.size is divided by (3+dim_num)
config_assert(input_layer.size % (3+dim_num) == 0, "size % (dim_num) should be 0!")
size = input_layer.size / (3+dim_num)
self.set_layer_size(size)
self.config.active_gate_type = active_gate_type
self.config.active_state_type = active_state_type
for i in xrange(len(directions)):
self.config.directions.append(int(directions[i]))
self.create_input_parameter(0, size * size * (3+dim_num), [size, size, 3+dim_num])
#bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
self.create_bias_parameter(bias, size * (5+2*dim_num))
@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
def __init__(
self,
name,
inputs,
reversed=False,
active_gate_type="sigmoid",
bias=True,
**xargs):
super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0, inputs, **xargs)
config_assert(len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
input_layer = self.get_input_layer(0)
#check input_layer.size is divided by 3
config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
size = input_layer.size / 3
self.set_layer_size(size)
self.config.reversed = reversed
self.config.active_gate_type = active_gate_type
self.create_input_parameter(0, size * size * 3, [size, size * 3])
self.create_bias_parameter(bias, size * 3)
@config_layer('gru_step')
class GruStepLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
active_gate_type="sigmoid",
bias=True,
**xargs):
super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs, **xargs)
config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
input_layer0 = self.get_input_layer(0)
input_layer1 = self.get_input_layer(1)
config_assert(input_layer0.size == 3 * size, 'input_layer0.size != 3 * layer.size')
config_assert(input_layer1.size == size, 'input_layer1.size != layer.size')
self.config.active_gate_type = active_gate_type
self.create_input_parameter(0, size * size * 3, [size, size * 3])
self.create_bias_parameter(bias, size * 3)
'''
A layer for calculating the cost of sequential conditional random field model.
Example: CRFLayer(name="crf_cost", size=label_num,
inputs=["output", "label", "weight"])
where "weight" is optional, one weight for each sequence
@param coeff: weight of the layer
'''
@config_layer('crf')
class CRFLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
coeff=1.0,
device=None):
super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
config_assert(2 <= len(self.inputs) <= 3, 'CRFLayer must have 2 or 3 inputs')
self.create_input_parameter(0, size * (size + 2), [size, size + 2])
self.config.coeff = coeff
'''
A layer for calculating the decoding sequence of sequential conditional
random field model.
The decoding sequence is stored in output_.ids
If a second input is provided, it is treated as the ground-truth label, and
this layer will also calculate error, output_.value[i] is 1 for incorrect
decoding or 0 for correct decoding
'''
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
device=None):
super(CRFDecodingLayer, self).__init__(
name, 'crf_decoding', size, inputs, device=device)
config_assert(
len(self.inputs) <= 2,
'CRFDecodingLayer cannot have more than 2 inputs')
self.create_input_parameter(0, size * (size + 2), [size, size + 2])
@config_layer('ctc')
class CTCLayer(LayerBase):
def __init__(
self,
name,
size,
inputs,
norm_by_times = False,
device=None):
super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
self.config.norm_by_times = norm_by_times
config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
def __init__(
self,
name,
device=None):
super(RecurrentLayerGroup, self).__init__(
name, 'recurrent_layer_group', 0, inputs=[], device=device)
# Deprecated, use a new layer specific class instead
@config_func
def Layer(
name,
type,
**xargs):
layers = {}
layers.update(g_cost_map)
layers.update(g_layer_type_map)
layer_func = layers.get(type)
config_assert(layer_func,
"layer type '%s' not supported." % type)
layer_func(name, **xargs)
@config_func
def ParameterHook(
type,
**kwargs):
if type == 'pruning':
mask_filename = kwargs.get('mask_filename', None)
assert mask_filename is not None
hook = ParameterUpdaterHookConfig()
hook.type = type
hook.purning_mask_filename = mask_filename
return hook
else:
return None
@config_func
def Parameter(
name,
size,
device,
dims,
learning_rate=None,
momentum=None,
decay_rate=None,
decay_rate_l1=None,
initial_mean=None,
initial_std=None,
initial_strategy=None,
initial_smart=None,
num_batches_regularization=None,
sparse_remote_update=None,
sparse_update=None,
gradient_clipping_threshold=None,
sparse=None,
format=None,
need_compact=None,
is_static=None,
is_shared=None,
update_hooks=None
):
config_assert(name not in g_parameter_map,
'Duplicated parameter name: ' + name)
para = g_config.model_config.parameters.add()
para.name = name
para.size = size
para.device = device
para.dims.extend(dims);
para.learning_rate = default(learning_rate, 1.)
para.momentum = default(momentum, g_default_momentum)
config_assert(not momentum or not decay_rate_l1,
"momentum and decay_rate_l1 cannot both be non-zero")
para.decay_rate = default(decay_rate, g_default_decay_rate)
if decay_rate_l1 is not None:
para.decay_rate_l1 = decay_rate_l1
para.initial_std = default(initial_std, g_default_initial_std)
para.initial_mean = default(initial_mean, g_default_initial_mean)
para.num_batches_regularization = default(
num_batches_regularization, g_default_num_batches_regularization)
if sparse_remote_update is not None:
para.sparse_remote_update = sparse_remote_update
if sparse_remote_update:
g_config.opt_config.use_sparse_remote_updater = True
if sparse_update is not None:
para.sparse_update = sparse_update
para.gradient_clipping_threshold = default(
gradient_clipping_threshold, g_default_gradient_clipping_threshold);
para.initial_strategy = default(initial_strategy, g_default_initial_strategy)
para.initial_smart = default(initial_smart, g_default_initial_smart)
if para.initial_smart:
para.initial_mean = 0.
if len(para.dims) != 0:
para.initial_std = 1. / math.sqrt(para.dims[0])
else:
print("Use initial_smart, but dims not set. Initial_smart may not be used in this layer")
traceback.print_exc()
para.initial_std = 1. / math.sqrt(para.size)
if g_default_compact_func is not None:
sparse, format, need_compact = g_default_compact_func(para.name)
para.is_sparse = default(sparse, False)
para.format = default(format, "")
para.need_compact = default(need_compact, False)
if is_static is not None:
para.is_static = is_static
config_assert(not para.sparse_remote_update or not para.is_static,
"sparse_remote_update and is_static cannot both be true")
para.is_shared = default(is_shared, False)
update_hooks = default(update_hooks, g_default_update_hooks)
if update_hooks is not None:
if hasattr(update_hooks, '__call__'):
update_hooks = update_hooks(para.name)
if isinstance(update_hooks, list):
for hook in update_hooks:
para.update_hooks.extend([hook])
else:
para.update_hooks.extend(update_hooks)
g_parameter_map[name] = para
@config_func
def default_initial_std(val):
global g_default_initial_std
g_default_initial_std = val
@config_func
def default_initial_mean(val):
global g_default_initial_mean
g_default_initial_mean = val
@config_func
def default_initial_strategy(val):
global g_default_initial_strategy
g_default_initial_strategy = val
@config_func
def default_initial_smart(val):
global g_default_initial_smart
g_default_initial_smart = val
@config_func
def default_momentum(val):
global g_default_momentum
g_default_momentum = val
@config_func
def default_decay_rate(val):
global g_default_decay_rate
g_default_decay_rate = val
@config_func
def default_num_batches_regularization(val):
global g_default_num_batches_regularization
g_default_num_batches_regularization = val
@config_func
def default_gradient_clipping_threshold(val):
global g_default_gradient_clipping_threshold
g_default_gradient_clipping_threshold = val
@config_func
def default_device(val):
global g_default_device
g_default_device = val
@config_func
def default_update_hooks(val):
global g_default_update_hooks
g_default_update_hooks = val
@config_func
def default_compact_func(val):
global g_default_compact_func
g_default_compact_func = val
def make_importer(config_dir, config_args):
def Import(config_file, local_args={}):
if not config_file.startswith('/'):
config_file = config_dir + '/' + config_file
g_config.config_files.append(config_file)
execfile(config_file, make_config_environment(config_file, config_args), local_args)
return Import
settings = dict(
batch_size=None,
mini_batch_size=None,
algorithm='async_sgd',
async_lagged_grad_discard_ratio=1.5,
learning_method='momentum',
num_batches_per_send_parameter=None,
num_batches_per_get_parameter=None,
center_parameter_update_method=None,
learning_rate=1.,
learning_rate_decay_a=0.,
learning_rate_decay_b=0.,
learning_rate_schedule='poly',
learning_rate_args='',
l1weight=0.1,
l2weight=0.,
l2weight_zero_iter=0,
c1=0.0001,
backoff=0.5,
owlqn_steps=10,
max_backoff=5,
average_window=0,
do_average_in_cpu=False,
max_average_window=None,
ada_epsilon=1e-6,
ada_rou=0.95,
delta_add_rate=1.0,
shrink_parameter_value=0,
adam_beta1 = 0.9,
adam_beta2 = 0.999,
adam_epsilon = 1e-8,
)
settings_deprecated = dict(
usage_ratio=1.,
)
trainer_settings = dict(
save_dir="./output/model",
init_model_path=None,
start_pass=0,
)
@config_func
def Settings(**args):
for k, v in args.iteritems():
if k == "usage_ratio":
logger.warning("Deprecated: define usage_ratio in DataConfig instead")
if g_config.HasField("data_config"):
g_config.data_config.__setattr__(k, v)
settings_deprecated[k] = v
continue
elif k in settings:
settings[k] = v
elif k in trainer_settings:
trainer_settings[k] = v
else:
logger.fatal('Unkown setting: %s' % k)
@config_func
def cluster_config(**args):
pass
@config_func
def EnableSubmodelSuffix(flag=True):
"""
If enabled, the layer and evaluator names in submodel will be automatically
appended with @submodel_name
"""
global g_add_submodel_suffix
g_add_submodel_suffix = flag
def make_config_environment(config_file, config_args):
def make_setter(k):
def setter(v):
logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
return setter
funcs = {}
funcs.update(g_config_funcs)
for k in settings.iterkeys():
funcs[k] = make_setter(k)
for k in settings_deprecated.iterkeys():
funcs[k] = make_setter(k)
config_dir = os.path.dirname(config_file)
if not config_dir:
config_dir = '.'
funcs.update(
Import=make_importer(config_dir, config_args),
get_config_arg=make_get_config_arg(config_args),
)
funcs.update(g_extended_config_funcs)
return funcs
def make_get_config_arg(config_args):
def get_config_arg(name, type, default=None):
if type == bool:
s = config_args.get(name)
if not s:
return default
if s == 'True' or s == '1' or s == 'true':
return True
if s == 'False' or s == '0' or s == 'false':
return False
raise ValueError('Value of config_arg %s is not boolean' % name)
else:
return type(config_args.get(name, default))
return get_config_arg
def importlib(name):
__import__(name)
return sys.modules[name]
def find_caller():
stack = traceback.extract_stack()
for s in stack[-4::-1]:
if not s[0].endswith('config_parser.py'):
return s[0], s[1], s[2]
return "(unknown file)", 0, "(unknown function)"
def my_fatal(s):
logger.critical(s)
raise Exception()
def parse_config(config_file, config_arg_str):
'''
@param config_arg_str: a string of the form var1=val1,var2=val2. It will be
passed to config script as a dictionary CONFIG_ARGS
'''
init_config_environment()
config_args = {}
logger.findCaller = find_caller
logger.fatal = my_fatal
g_config.model_config.type = "nn"
if config_arg_str:
config_args = dict([f.split('=') for f in config_arg_str.split(',')])
global g_command_config_args
g_command_config_args.update(config_args)
extension_module_name = config_args.get('extension_module_name')
if extension_module_name:
global g_extended_config_funcs
extension_module = importlib(extension_module_name)
g_extended_config_funcs = extension_module.get_config_funcs(g_config)
g_config.model_config.type = 'nn'
global g_current_submodel, g_root_submodel
g_root_submodel = g_config.model_config.sub_models.add()
g_root_submodel.name = 'root'
g_root_submodel.is_recurrent_layer_group = False
g_current_submodel = g_root_submodel
execfile(config_file, make_config_environment(config_file, config_args))
for k, v in settings.iteritems():
if v is None:
continue
g_config.opt_config.__setattr__(k, v);
for k, v in trainer_settings.iteritems():
if v is None:
continue
g_config.__setattr__(k, v)
for name in g_config.model_config.input_layer_names:
assert name in g_layer_map, \
'input name "%s" does not correspond to a layer name' % name
assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
'The type of input layer "%s" is not "data"' % name
for name in g_config.model_config.output_layer_names:
assert name in g_layer_map, \
'input name "%s" does not correspond to a layer name' % name
return g_config
def parse_config_and_serialize(config_file, config_arg_str):
try:
config = parse_config(config_file, config_arg_str)
#logger.info(config)
return config.SerializeToString()
except:
traceback.print_exc()
raise
if __name__ == '__main__':
try:
config = parse_config(sys.argv[1], '')
config.SerializeToString()
__real_print__(str(config))
except:
traceback.print_exc()
raise