You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
5.2 KiB
142 lines
5.2 KiB
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import itertools
|
|
import random
|
|
import numpy
|
|
|
|
from paddle.trainer.config_parser import parse_config
|
|
from paddle.trainer.config_parser import logger
|
|
import py_paddle.swig_paddle as api
|
|
from py_paddle import DataProviderConverter
|
|
|
|
|
|
def CHECK_EQ(a, b):
|
|
assert a == b, "a=%s, b=%s" % (a, b)
|
|
|
|
|
|
def copy_shared_parameters(src, dst):
|
|
src_params = [src.getParameter(i)
|
|
for i in xrange(src.getParameterSize())]
|
|
src_params = dict([(p.getName(), p) for p in src_params])
|
|
|
|
for i in xrange(dst.getParameterSize()):
|
|
dst_param = dst.getParameter(i)
|
|
src_param = src_params.get(dst_param.getName(), None)
|
|
if src_param is None:
|
|
continue
|
|
src_value = src_param.getBuf(api.PARAMETER_VALUE)
|
|
dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
|
|
CHECK_EQ(len(src_value), len(dst_value))
|
|
dst_value.copyFrom(src_value)
|
|
dst_param.setValueUpdated()
|
|
|
|
|
|
def get_real_samples(batch_size, sample_dim):
|
|
return numpy.random.rand(batch_size, sample_dim).astype('float32')
|
|
|
|
|
|
def prepare_discriminator_data_batch(
|
|
generator_machine, batch_size, noise_dim, sample_dim):
|
|
gen_inputs = prepare_generator_data_batch(batch_size / 2, noise_dim)
|
|
gen_inputs.resize(1)
|
|
gen_outputs = api.Arguments.createArguments(0)
|
|
generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
|
|
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
|
|
real_samples = get_real_samples(batch_size / 2, sample_dim)
|
|
all_samples = numpy.concatenate((fake_samples, real_samples), 0)
|
|
all_labels = numpy.concatenate(
|
|
(numpy.zeros(batch_size / 2, dtype='int32'),
|
|
numpy.ones(batch_size / 2, dtype='int32')), 0)
|
|
inputs = api.Arguments.createArguments(2)
|
|
inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(all_samples))
|
|
inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(all_labels))
|
|
return inputs
|
|
|
|
|
|
def prepare_generator_data_batch(batch_size, dim):
|
|
noise = numpy.random.normal(size=(batch_size, dim)).astype('float32')
|
|
label = numpy.ones(batch_size, dtype='int32')
|
|
inputs = api.Arguments.createArguments(2)
|
|
inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(noise))
|
|
inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(label))
|
|
return inputs
|
|
|
|
|
|
def find(iterable, cond):
|
|
for item in iterable:
|
|
if cond(item):
|
|
return item
|
|
return None
|
|
|
|
|
|
def get_layer_size(model_conf, layer_name):
|
|
layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
|
|
assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
|
|
return layer_conf.size
|
|
|
|
|
|
def main():
|
|
api.initPaddle('--use_gpu=0', '--dot_period=100', '--log_period=10000')
|
|
gen_conf = parse_config("gan_conf.py", "mode=generator_training")
|
|
dis_conf = parse_config("gan_conf.py", "mode=discriminator_training")
|
|
generator_conf = parse_config("gan_conf.py", "mode=generator")
|
|
batch_size = dis_conf.opt_config.batch_size
|
|
noise_dim = get_layer_size(gen_conf.model_config, "noise")
|
|
sample_dim = get_layer_size(dis_conf.model_config, "sample")
|
|
|
|
# this create a gradient machine for discriminator
|
|
dis_training_machine = api.GradientMachine.createFromConfigProto(
|
|
dis_conf.model_config)
|
|
|
|
gen_training_machine = api.GradientMachine.createFromConfigProto(
|
|
gen_conf.model_config)
|
|
|
|
# generator_machine is used to generate data only, which is used for
|
|
# training discrinator
|
|
logger.info(str(generator_conf.model_config))
|
|
generator_machine = api.GradientMachine.createFromConfigProto(
|
|
generator_conf.model_config)
|
|
|
|
dis_trainer = api.Trainer.create(
|
|
dis_conf, dis_training_machine)
|
|
|
|
gen_trainer = api.Trainer.create(
|
|
gen_conf, gen_training_machine)
|
|
|
|
dis_trainer.startTrain()
|
|
gen_trainer.startTrain()
|
|
for train_pass in xrange(10):
|
|
dis_trainer.startTrainPass()
|
|
gen_trainer.startTrainPass()
|
|
for i in xrange(100000):
|
|
copy_shared_parameters(gen_training_machine, generator_machine)
|
|
copy_shared_parameters(gen_training_machine, dis_training_machine)
|
|
data_batch = prepare_discriminator_data_batch(
|
|
generator_machine, batch_size, noise_dim, sample_dim)
|
|
dis_trainer.trainOneDataBatch(batch_size, data_batch)
|
|
|
|
copy_shared_parameters(dis_training_machine, gen_training_machine)
|
|
data_batch = prepare_generator_data_batch(
|
|
batch_size, noise_dim)
|
|
gen_trainer.trainOneDataBatch(batch_size, data_batch)
|
|
dis_trainer.finishTrainPass()
|
|
gen_trainer.finishTrainPass()
|
|
dis_trainer.finishTrain()
|
|
gen_trainer.finishTrain()
|
|
|
|
if __name__ == '__main__':
|
|
main()
|