You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/communicator.py

196 lines
6.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright(c) 2019 PaddlePaddle Authors.All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0(the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http: // www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .executor import global_scope
"""
Communicator is used for async distribute training in distribute_transpiler mode.
It's a wrapper of a cpp class Communicator and should be used inside fleet API.
"""
from . import core
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
__all__ = ['Communicator', 'LargeScaleKV']
class Communicator(object):
def __init__(self, mode, kwargs=None, envs=None):
"""
Communicator is used for async distribute training in distribute_transpiler mode.
It's a wrapper of a cpp class Communicator and should be used inside fleet API.
Args:
program(Program): the trainers program after transpile of distribute_transpiler.
It's used by communicator to extract the information to do communication.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.Program()
comm = fluid.communicator.Communicator(prog)
comm.start()
comm.stop()
"""
# set all recv op to not_run mode
if mode == DistributedMode.SYNC:
envs["pserver_endpoints"] = ','.join(kwargs["pserver_endpoints"])
envs["trainers"] = str(kwargs["trainers"])
envs["trainer_id"] = str(kwargs["trainer_id"])
envs["need_global_step"] = str(kwargs["need_global_step"])
envs["barrier_table_id"] = str(kwargs["barrier_table_id"])
mode_str = None
if mode == DistributedMode.SYNC:
mode_str = "SYNC"
elif mode == DistributedMode.ASYNC:
mode_str = "ASYNC"
elif mode == DistributedMode.HALF_ASYNC:
mode_str = "HALF_ASYNC"
elif mode == DistributedMode.GEO:
mode_str = "GEO"
self.mode = mode_str
self.envs = envs
self.communicator_ = None
self.send_ctx_ = None
self.recv_ctx_ = None
def init_with_ctx(self,
send_ctx,
recv_ctx,
proto_txt,
unit64_hosts,
scope=global_scope()):
self.communicator_ = core.DistCommunicator(self.mode, proto_txt,
unit64_hosts, send_ctx,
recv_ctx, scope, self.envs)
self.send_ctx_ = send_ctx
self.recv_ctx_ = recv_ctx
def start(self):
"""
Start communicator. Should call before training process.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.Program()
comm = fluid.communicator.Communicator(prog)
comm.start()
comm.stop()
"""
self.communicator_.start()
def stop(self):
"""
Stop communicator. Should call after training process.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.Program()
comm = fluid.communicator.Communicator(prog)
comm.start()
comm.stop()
"""
self.communicator_.stop()
def is_running(self):
"""
Get communicator is running or stop.
Returns:
bool
Examples:
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.Program()
comm = fluid.communicator.Communicator(prog)
comm.is_running()
"""
self.communicator_.is_running()
def recv(self):
self.communicator_.recv()
def init_params(self, context):
self.communicator_.init_params(context)
def push_sparse_param(self, var_name, table_id=-1, scope=global_scope()):
if not self.is_running():
raise ValueError(
"Communicator should init first. Using fleet.init_worker() before push_sparse_param()"
)
assert isinstance(var_name, str)
assert isinstance(table_id, int)
if table_id == -1:
table_id = self.send_ctx_[var_name].table_id()
self.communicator_.push_sparse_param(var_name, table_id, scope)
class LargeScaleKV(object):
def __init__(self):
self.scale_kv = core.LargeScaleKV()
def save(self, varname, dirname):
self.scale_kv.save(varname, dirname)
def load(self, varname, dirname):
self.scale_kv.load(varname, dirname)
def size(self, varname):
return self.scale_kv.size(varname)
class HeterClient(object):
def __init__(self, endpoint, trainer_id):
self.heter_client_ = core.HeterClient(endpoint, trainer_id)
def stop(self):
self.heter_client_.stop()